whisper
About
Whisper is OpenAI's multilingual speech recognition model for transcribing and translating audio across 99 languages. It handles tasks like podcast transcription, meeting notes, and processing noisy or multilingual audio. Developers should use it for robust, production-ready speech-to-text capabilities.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/whisperCopy and paste this command in Claude Code to install this skill
Documentation
Whisper - Robust Speech Recognition
OpenAI's multilingual speech recognition model.
When to use Whisper
Use when:
- Speech-to-text transcription (99 languages)
- Podcast/video transcription
- Meeting notes automation
- Translation to English
- Noisy audio transcription
- Multilingual audio processing
Metrics:
- 72,900+ GitHub stars
- 99 languages supported
- Trained on 680,000 hours of audio
- MIT License
Use alternatives instead:
- AssemblyAI: Managed API, speaker diarization
- Deepgram: Real-time streaming ASR
- Google Speech-to-Text: Cloud-based
Quick start
Installation
# Requires Python 3.8-3.11
pip install -U openai-whisper
# Requires ffmpeg
# macOS: brew install ffmpeg
# Ubuntu: sudo apt install ffmpeg
# Windows: choco install ffmpeg
Basic transcription
import whisper
# Load model
model = whisper.load_model("base")
# Transcribe
result = model.transcribe("audio.mp3")
# Print text
print(result["text"])
# Access segments
for segment in result["segments"]:
print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] {segment['text']}")
Model sizes
# Available models
models = ["tiny", "base", "small", "medium", "large", "turbo"]
# Load specific model
model = whisper.load_model("turbo") # Fastest, good quality
| Model | Parameters | English-only | Multilingual | Speed | VRAM |
|---|---|---|---|---|---|
| tiny | 39M | ✓ | ✓ | ~32x | ~1 GB |
| base | 74M | ✓ | ✓ | ~16x | ~1 GB |
| small | 244M | ✓ | ✓ | ~6x | ~2 GB |
| medium | 769M | ✓ | ✓ | ~2x | ~5 GB |
| large | 1550M | ✗ | ✓ | 1x | ~10 GB |
| turbo | 809M | ✗ | ✓ | ~8x | ~6 GB |
Recommendation: Use turbo for best speed/quality, base for prototyping
Transcription options
Language specification
# Auto-detect language
result = model.transcribe("audio.mp3")
# Specify language (faster)
result = model.transcribe("audio.mp3", language="en")
# Supported: en, es, fr, de, it, pt, ru, ja, ko, zh, and 89 more
Task selection
# Transcription (default)
result = model.transcribe("audio.mp3", task="transcribe")
# Translation to English
result = model.transcribe("spanish.mp3", task="translate")
# Input: Spanish audio → Output: English text
Initial prompt
# Improve accuracy with context
result = model.transcribe(
"audio.mp3",
initial_prompt="This is a technical podcast about machine learning and AI."
)
# Helps with:
# - Technical terms
# - Proper nouns
# - Domain-specific vocabulary
Timestamps
# Word-level timestamps
result = model.transcribe("audio.mp3", word_timestamps=True)
for segment in result["segments"]:
for word in segment["words"]:
print(f"{word['word']} ({word['start']:.2f}s - {word['end']:.2f}s)")
Temperature fallback
# Retry with different temperatures if confidence low
result = model.transcribe(
"audio.mp3",
temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
)
Command line usage
# Basic transcription
whisper audio.mp3
# Specify model
whisper audio.mp3 --model turbo
# Output formats
whisper audio.mp3 --output_format txt # Plain text
whisper audio.mp3 --output_format srt # Subtitles
whisper audio.mp3 --output_format vtt # WebVTT
whisper audio.mp3 --output_format json # JSON with timestamps
# Language
whisper audio.mp3 --language Spanish
# Translation
whisper spanish.mp3 --task translate
Batch processing
import os
audio_files = ["file1.mp3", "file2.mp3", "file3.mp3"]
for audio_file in audio_files:
print(f"Transcribing {audio_file}...")
result = model.transcribe(audio_file)
# Save to file
output_file = audio_file.replace(".mp3", ".txt")
with open(output_file, "w") as f:
f.write(result["text"])
Real-time transcription
# For streaming audio, use faster-whisper
# pip install faster-whisper
from faster_whisper import WhisperModel
model = WhisperModel("base", device="cuda", compute_type="float16")
# Transcribe with streaming
segments, info = model.transcribe("audio.mp3", beam_size=5)
for segment in segments:
print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}")
GPU acceleration
import whisper
# Automatically uses GPU if available
model = whisper.load_model("turbo")
# Force CPU
model = whisper.load_model("turbo", device="cpu")
# Force GPU
model = whisper.load_model("turbo", device="cuda")
# 10-20× faster on GPU
Integration with other tools
Subtitle generation
# Generate SRT subtitles
whisper video.mp4 --output_format srt --language English
# Output: video.srt
With LangChain
from langchain.document_loaders import WhisperTranscriptionLoader
loader = WhisperTranscriptionLoader(file_path="audio.mp3")
docs = loader.load()
# Use transcription in RAG
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings
vectorstore = Chroma.from_documents(docs, OpenAIEmbeddings())
Extract audio from video
# Use ffmpeg to extract audio
ffmpeg -i video.mp4 -vn -acodec pcm_s16le audio.wav
# Then transcribe
whisper audio.wav
Best practices
- Use turbo model - Best speed/quality for English
- Specify language - Faster than auto-detect
- Add initial prompt - Improves technical terms
- Use GPU - 10-20× faster
- Batch process - More efficient
- Convert to WAV - Better compatibility
- Split long audio - <30 min chunks
- Check language support - Quality varies by language
- Use faster-whisper - 4× faster than openai-whisper
- Monitor VRAM - Scale model size to hardware
Performance
| Model | Real-time factor (CPU) | Real-time factor (GPU) |
|---|---|---|
| tiny | ~0.32 | ~0.01 |
| base | ~0.16 | ~0.01 |
| turbo | ~0.08 | ~0.01 |
| large | ~1.0 | ~0.05 |
Real-time factor: 0.1 = 10× faster than real-time
Language support
Top-supported languages:
- English (en)
- Spanish (es)
- French (fr)
- German (de)
- Italian (it)
- Portuguese (pt)
- Russian (ru)
- Japanese (ja)
- Korean (ko)
- Chinese (zh)
Full list: 99 languages total
Limitations
- Hallucinations - May repeat or invent text
- Long-form accuracy - Degrades on >30 min audio
- Speaker identification - No diarization
- Accents - Quality varies
- Background noise - Can affect accuracy
- Real-time latency - Not suitable for live captioning
Resources
- GitHub: https://github.com/openai/whisper ⭐ 72,900+
- Paper: https://arxiv.org/abs/2212.04356
- Model Card: https://github.com/openai/whisper/blob/main/model-card.md
- Colab: Available in repo
- License: MIT
GitHub Repository
Related Skills
axolotl
DesignThis skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.
llama-factory
DesignThis skill provides expert guidance for fine-tuning LLMs using the LLaMA-Factory framework, including its no-code WebUI and support for 100+ models with QLoRA quantization. Use it when implementing, debugging, or learning best practices for LLaMA-Factory solutions in your development workflow.
nemo-curator
Developmentnemo-curator is a GPU-accelerated toolkit for curating high-quality, multi-modal datasets for LLM training. It provides fast operations like fuzzy deduplication, quality filtering, and PII redaction, scaling across GPUs with RAPIDS. Use it to efficiently clean web-scraped data or deduplicate large corpora.
clip
OtherCLIP is a vision-language model for zero-shot image classification and cross-modal retrieval without fine-tuning. It enables tasks like image-text matching, semantic search, and content moderation by understanding images from natural language prompts. Developers can use it for general-purpose vision tasks where labeled training data is unavailable.
