tensorboard
About
TensorBoard enables ML developers to visualize training metrics, debug models with histograms, and compare experiments. It also helps visualize model graphs, project embeddings, and profile performance. Use this skill when you need Google's comprehensive toolkit for tracking and analyzing machine learning workflows.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/tensorboardCopy and paste this command in Claude Code to install this skill
Documentation
TensorBoard: Visualization Toolkit for ML
When to Use This Skill
Use TensorBoard when you need to:
- Visualize training metrics like loss and accuracy over time
- Debug models with histograms and distributions
- Compare experiments across multiple runs
- Visualize model graphs and architecture
- Project embeddings to lower dimensions (t-SNE, PCA)
- Track hyperparameter experiments
- Profile performance and identify bottlenecks
- Visualize images and text during training
Users: 20M+ downloads/year | GitHub Stars: 27k+ | License: Apache 2.0
Installation
# Install TensorBoard
pip install tensorboard
# PyTorch integration
pip install torch torchvision tensorboard
# TensorFlow integration (TensorBoard included)
pip install tensorflow
# Launch TensorBoard
tensorboard --logdir=runs
# Access at http://localhost:6006
Quick Start
PyTorch
from torch.utils.tensorboard import SummaryWriter
# Create writer
writer = SummaryWriter('runs/experiment_1')
# Training loop
for epoch in range(10):
train_loss = train_epoch()
val_acc = validate()
# Log metrics
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Accuracy/val', val_acc, epoch)
# Close writer
writer.close()
# Launch: tensorboard --logdir=runs
TensorFlow/Keras
import tensorflow as tf
# Create callback
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir='logs/fit',
histogram_freq=1
)
# Train model
model.fit(
x_train, y_train,
epochs=10,
validation_data=(x_val, y_val),
callbacks=[tensorboard_callback]
)
# Launch: tensorboard --logdir=logs
Core Concepts
1. SummaryWriter (PyTorch)
from torch.utils.tensorboard import SummaryWriter
# Default directory: runs/CURRENT_DATETIME
writer = SummaryWriter()
# Custom directory
writer = SummaryWriter('runs/experiment_1')
# Custom comment (appended to default directory)
writer = SummaryWriter(comment='baseline')
# Log data
writer.add_scalar('Loss/train', 0.5, step=0)
writer.add_scalar('Loss/train', 0.3, step=1)
# Flush and close
writer.flush()
writer.close()
2. Logging Scalars
# PyTorch
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
for epoch in range(100):
train_loss = train()
val_loss = validate()
# Log individual metrics
writer.add_scalar('Loss/train', train_loss, epoch)
writer.add_scalar('Loss/val', val_loss, epoch)
writer.add_scalar('Accuracy/train', train_acc, epoch)
writer.add_scalar('Accuracy/val', val_acc, epoch)
# Learning rate
lr = optimizer.param_groups[0]['lr']
writer.add_scalar('Learning_rate', lr, epoch)
writer.close()
# TensorFlow
import tensorflow as tf
train_summary_writer = tf.summary.create_file_writer('logs/train')
val_summary_writer = tf.summary.create_file_writer('logs/val')
for epoch in range(100):
with train_summary_writer.as_default():
tf.summary.scalar('loss', train_loss, step=epoch)
tf.summary.scalar('accuracy', train_acc, step=epoch)
with val_summary_writer.as_default():
tf.summary.scalar('loss', val_loss, step=epoch)
tf.summary.scalar('accuracy', val_acc, step=epoch)
3. Logging Multiple Scalars
# PyTorch: Group related metrics
writer.add_scalars('Loss', {
'train': train_loss,
'validation': val_loss,
'test': test_loss
}, epoch)
writer.add_scalars('Metrics', {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1': f1_score
}, epoch)
4. Logging Images
# PyTorch
import torch
from torchvision.utils import make_grid
# Single image
writer.add_image('Input/sample', img_tensor, epoch)
# Multiple images as grid
img_grid = make_grid(images[:64], nrow=8)
writer.add_image('Batch/inputs', img_grid, epoch)
# Predictions visualization
pred_grid = make_grid(predictions[:16], nrow=4)
writer.add_image('Predictions', pred_grid, epoch)
# TensorFlow
import tensorflow as tf
with file_writer.as_default():
# Encode images as PNG
tf.summary.image('Training samples', images, step=epoch, max_outputs=25)
5. Logging Histograms
# PyTorch: Track weight distributions
for name, param in model.named_parameters():
writer.add_histogram(name, param, epoch)
# Track gradients
if param.grad is not None:
writer.add_histogram(f'{name}.grad', param.grad, epoch)
# Track activations
writer.add_histogram('Activations/relu1', activations, epoch)
# TensorFlow
with file_writer.as_default():
tf.summary.histogram('weights/layer1', layer1.kernel, step=epoch)
tf.summary.histogram('activations/relu1', activations, step=epoch)
6. Logging Model Graph
# PyTorch
import torch
model = MyModel()
dummy_input = torch.randn(1, 3, 224, 224)
writer.add_graph(model, dummy_input)
writer.close()
# TensorFlow (automatic with Keras)
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir='logs',
write_graph=True
)
model.fit(x, y, callbacks=[tensorboard_callback])
Advanced Features
Embedding Projector
Visualize high-dimensional data (embeddings, features) in 2D/3D.
import torch
from torch.utils.tensorboard import SummaryWriter
# Get embeddings (e.g., word embeddings, image features)
embeddings = model.get_embeddings(data) # Shape: (N, embedding_dim)
# Metadata (labels for each point)
metadata = ['class_1', 'class_2', 'class_1', ...]
# Images (optional, for image embeddings)
label_images = torch.stack([img1, img2, img3, ...])
# Log to TensorBoard
writer.add_embedding(
embeddings,
metadata=metadata,
label_img=label_images,
global_step=epoch
)
In TensorBoard:
- Navigate to "Projector" tab
- Choose PCA, t-SNE, or UMAP visualization
- Search, filter, and explore clusters
Hyperparameter Tuning
from torch.utils.tensorboard import SummaryWriter
# Try different hyperparameters
for lr in [0.001, 0.01, 0.1]:
for batch_size in [16, 32, 64]:
# Create unique run directory
writer = SummaryWriter(f'runs/lr{lr}_bs{batch_size}')
# Log hyperparameters
writer.add_hparams(
{'lr': lr, 'batch_size': batch_size},
{'hparam/accuracy': final_acc, 'hparam/loss': final_loss}
)
# Train and log
for epoch in range(10):
loss = train(lr, batch_size)
writer.add_scalar('Loss/train', loss, epoch)
writer.close()
# Compare in TensorBoard's "HParams" tab
Text Logging
# PyTorch: Log text (e.g., model predictions, summaries)
writer.add_text('Predictions', f'Epoch {epoch}: {predictions}', epoch)
writer.add_text('Config', str(config), 0)
# Log markdown tables
markdown_table = """
| Metric | Value |
|--------|-------|
| Accuracy | 0.95 |
| F1 Score | 0.93 |
"""
writer.add_text('Results', markdown_table, epoch)
PR Curves
Precision-Recall curves for classification.
from torch.utils.tensorboard import SummaryWriter
# Get predictions and labels
predictions = model(test_data) # Shape: (N, num_classes)
labels = test_labels # Shape: (N,)
# Log PR curve for each class
for i in range(num_classes):
writer.add_pr_curve(
f'PR_curve/class_{i}',
labels == i,
predictions[:, i],
global_step=epoch
)
Integration Examples
PyTorch Training Loop
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
# Setup
writer = SummaryWriter('runs/resnet_experiment')
model = ResNet50()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
# Log model graph
dummy_input = torch.randn(1, 3, 224, 224)
writer.add_graph(model, dummy_input)
# Training loop
for epoch in range(50):
model.train()
train_loss = 0.0
train_correct = 0
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.item()
pred = output.argmax(dim=1)
train_correct += pred.eq(target).sum().item()
# Log batch metrics (every 100 batches)
if batch_idx % 100 == 0:
global_step = epoch * len(train_loader) + batch_idx
writer.add_scalar('Loss/train_batch', loss.item(), global_step)
# Epoch metrics
train_loss /= len(train_loader)
train_acc = train_correct / len(train_loader.dataset)
# Validation
model.eval()
val_loss = 0.0
val_correct = 0
with torch.no_grad():
for data, target in val_loader:
output = model(data)
val_loss += criterion(output, target).item()
pred = output.argmax(dim=1)
val_correct += pred.eq(target).sum().item()
val_loss /= len(val_loader)
val_acc = val_correct / len(val_loader.dataset)
# Log epoch metrics
writer.add_scalars('Loss', {'train': train_loss, 'val': val_loss}, epoch)
writer.add_scalars('Accuracy', {'train': train_acc, 'val': val_acc}, epoch)
# Log learning rate
writer.add_scalar('Learning_rate', optimizer.param_groups[0]['lr'], epoch)
# Log histograms (every 5 epochs)
if epoch % 5 == 0:
for name, param in model.named_parameters():
writer.add_histogram(name, param, epoch)
# Log sample predictions
if epoch % 10 == 0:
sample_images = data[:8]
writer.add_image('Sample_inputs', make_grid(sample_images), epoch)
writer.close()
TensorFlow/Keras Training
import tensorflow as tf
# Define model
model = tf.keras.models.Sequential([
tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']
)
# TensorBoard callback
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir='logs/fit',
histogram_freq=1, # Log histograms every epoch
write_graph=True, # Visualize model graph
write_images=True, # Visualize weights as images
update_freq='epoch', # Log metrics every epoch
profile_batch='500,520', # Profile batches 500-520
embeddings_freq=1 # Log embeddings every epoch
)
# Train
model.fit(
x_train, y_train,
epochs=10,
validation_data=(x_val, y_val),
callbacks=[tensorboard_callback]
)
Comparing Experiments
Multiple Runs
# Run experiments with different configs
python train.py --lr 0.001 --logdir runs/exp1
python train.py --lr 0.01 --logdir runs/exp2
python train.py --lr 0.1 --logdir runs/exp3
# View all runs together
tensorboard --logdir=runs
In TensorBoard:
- All runs appear in the same dashboard
- Toggle runs on/off for comparison
- Use regex to filter run names
- Overlay charts to compare metrics
Organizing Experiments
# Hierarchical organization
runs/
├── baseline/
│ ├── run_1/
│ └── run_2/
├── improved/
│ ├── run_1/
│ └── run_2/
└── final/
└── run_1/
# Log with hierarchy
writer = SummaryWriter('runs/baseline/run_1')
Best Practices
1. Use Descriptive Run Names
# ✅ Good: Descriptive names
from datetime import datetime
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
writer = SummaryWriter(f'runs/resnet50_lr0.001_bs32_{timestamp}')
# ❌ Bad: Auto-generated names
writer = SummaryWriter() # Creates runs/Jan01_12-34-56_hostname
2. Group Related Metrics
# ✅ Good: Grouped metrics
writer.add_scalar('Loss/train', train_loss, step)
writer.add_scalar('Loss/val', val_loss, step)
writer.add_scalar('Accuracy/train', train_acc, step)
writer.add_scalar('Accuracy/val', val_acc, step)
# ❌ Bad: Flat namespace
writer.add_scalar('train_loss', train_loss, step)
writer.add_scalar('val_loss', val_loss, step)
3. Log Regularly but Not Too Often
# ✅ Good: Log epoch metrics always, batch metrics occasionally
for epoch in range(100):
for batch_idx, (data, target) in enumerate(train_loader):
loss = train_step(data, target)
# Log every 100 batches
if batch_idx % 100 == 0:
writer.add_scalar('Loss/batch', loss, global_step)
# Always log epoch metrics
writer.add_scalar('Loss/epoch', epoch_loss, epoch)
# ❌ Bad: Log every batch (creates huge log files)
for batch in train_loader:
writer.add_scalar('Loss', loss, step) # Too frequent
4. Close Writer When Done
# ✅ Good: Use context manager
with SummaryWriter('runs/exp1') as writer:
for epoch in range(10):
writer.add_scalar('Loss', loss, epoch)
# Automatically closes
# Or manually
writer = SummaryWriter('runs/exp1')
# ... logging ...
writer.close()
5. Use Separate Writers for Train/Val
# ✅ Good: Separate log directories
train_writer = SummaryWriter('runs/exp1/train')
val_writer = SummaryWriter('runs/exp1/val')
train_writer.add_scalar('loss', train_loss, epoch)
val_writer.add_scalar('loss', val_loss, epoch)
Performance Profiling
TensorFlow Profiler
# Enable profiling
tensorboard_callback = tf.keras.callbacks.TensorBoard(
log_dir='logs',
profile_batch='10,20' # Profile batches 10-20
)
model.fit(x, y, callbacks=[tensorboard_callback])
# View in TensorBoard Profile tab
# Shows: GPU utilization, kernel stats, memory usage, bottlenecks
PyTorch Profiler
import torch.profiler as profiler
with profiler.profile(
activities=[
profiler.ProfilerActivity.CPU,
profiler.ProfilerActivity.CUDA
],
on_trace_ready=torch.profiler.tensorboard_trace_handler('./runs/profiler'),
record_shapes=True,
with_stack=True
) as prof:
for batch in train_loader:
loss = train_step(batch)
prof.step()
# View in TensorBoard Profile tab
Resources
- Documentation: https://www.tensorflow.org/tensorboard
- PyTorch Integration: https://pytorch.org/docs/stable/tensorboard.html
- GitHub: https://github.com/tensorflow/tensorboard (27k+ stars)
- TensorBoard.dev: https://tensorboard.dev (share experiments publicly)
See Also
references/visualization.md- Comprehensive visualization guidereferences/profiling.md- Performance profiling patternsreferences/integrations.md- Framework-specific integration examples
GitHub Repository
Related Skills
weights-and-biases
DesignThis skill enables ML experiment tracking and MLOps using Weights & Biases, automatically logging metrics and visualizing training in real-time. It helps developers optimize hyperparameters with sweeps, compare runs, and manage a versioned model registry. Use it for collaborative ML project management with full artifact lineage tracking.
huggingface-accelerate
DevelopmentHuggingFace Accelerate provides a unified API for adding distributed training support to PyTorch scripts with just 4 lines of code. It seamlessly integrates with DeepSpeed, FSDP, Megatron, and DDP while handling automatic device placement and mixed precision. Use this skill when you need to scale PyTorch training across multiple GPUs or nodes with minimal code changes.
pytorch-fsdp
DesignThis skill provides expert guidance for implementing Fully Sharded Data Parallel (FSDP) training in PyTorch. Use it when working with parameter sharding, mixed precision, CPU offloading, or FSDP2 features during distributed training development. It helps with implementation, debugging, and best practices for large-scale model training.
optimizing-attention-flash
OtherThis skill implements Flash Attention to optimize transformer models, providing 2-4x speed improvements and 10-20x memory reduction for long sequences (>512 tokens). Use it when encountering GPU memory constraints or needing faster inference with transformers. It supports PyTorch's native SDPA, the flash-attn library, H100 FP8, and sliding window attention.
