Back to Skills

peft-fine-tuning

davila7
Updated Today
20 views
15,516
1,344
15,516
View on GitHub
OtherFine-TuningPEFTLoRAQLoRAParameter-EfficientAdaptersLow-RankMemory OptimizationMulti-Adapter

About

This skill enables parameter-efficient fine-tuning of large language models using LoRA, QLoRA, and other adapter methods, drastically reducing GPU memory requirements. It's ideal for fine-tuning 7B-70B models on consumer hardware by training less than 1% of parameters while maintaining accuracy. The integration with Hugging Face's ecosystem supports multi-adapter serving and rapid iteration with task-specific adapters.

Quick Install

Claude Code

Recommended
Plugin CommandRecommended
/plugin add https://github.com/davila7/claude-code-templates
Git CloneAlternative
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/peft-fine-tuning

Copy and paste this command in Claude Code to install this skill

Documentation

PEFT (Parameter-Efficient Fine-Tuning)

Fine-tune LLMs by training <1% of parameters using LoRA, QLoRA, and 25+ adapter methods.

When to use PEFT

Use PEFT/LoRA when:

  • Fine-tuning 7B-70B models on consumer GPUs (RTX 4090, A100)
  • Need to train <1% parameters (6MB adapters vs 14GB full model)
  • Want fast iteration with multiple task-specific adapters
  • Deploying multiple fine-tuned variants from one base model

Use QLoRA (PEFT + quantization) when:

  • Fine-tuning 70B models on single 24GB GPU
  • Memory is the primary constraint
  • Can accept ~5% quality trade-off vs full fine-tuning

Use full fine-tuning instead when:

  • Training small models (<1B parameters)
  • Need maximum quality and have compute budget
  • Significant domain shift requires updating all weights

Quick start

Installation

# Basic installation
pip install peft

# With quantization support (recommended)
pip install peft bitsandbytes

# Full stack
pip install peft transformers accelerate bitsandbytes datasets

LoRA fine-tuning (standard)

from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
from peft import get_peft_model, LoraConfig, TaskType
from datasets import load_dataset

# Load base model
model_name = "meta-llama/Llama-3.1-8B"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.pad_token = tokenizer.eos_token

# LoRA configuration
lora_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    r=16,                          # Rank (8-64, higher = more capacity)
    lora_alpha=32,                 # Scaling factor (typically 2*r)
    lora_dropout=0.05,             # Dropout for regularization
    target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],  # Attention layers
    bias="none"                    # Don't train biases
)

# Apply LoRA
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# Output: trainable params: 13,631,488 || all params: 8,043,307,008 || trainable%: 0.17%

# Prepare dataset
dataset = load_dataset("databricks/databricks-dolly-15k", split="train")

def tokenize(example):
    text = f"### Instruction:\n{example['instruction']}\n\n### Response:\n{example['response']}"
    return tokenizer(text, truncation=True, max_length=512, padding="max_length")

tokenized = dataset.map(tokenize, remove_columns=dataset.column_names)

# Training
training_args = TrainingArguments(
    output_dir="./lora-llama",
    num_train_epochs=3,
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    learning_rate=2e-4,
    fp16=True,
    logging_steps=10,
    save_strategy="epoch"
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized,
    data_collator=lambda data: {"input_ids": torch.stack([f["input_ids"] for f in data]),
                                 "attention_mask": torch.stack([f["attention_mask"] for f in data]),
                                 "labels": torch.stack([f["input_ids"] for f in data])}
)

trainer.train()

# Save adapter only (6MB vs 16GB)
model.save_pretrained("./lora-llama-adapter")

QLoRA fine-tuning (memory-efficient)

from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training

# 4-bit quantization config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",           # NormalFloat4 (best for LLMs)
    bnb_4bit_compute_dtype="bfloat16",   # Compute in bf16
    bnb_4bit_use_double_quant=True       # Nested quantization
)

# Load quantized model
model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-70B",
    quantization_config=bnb_config,
    device_map="auto"
)

# Prepare for training (enables gradient checkpointing)
model = prepare_model_for_kbit_training(model)

# LoRA config for QLoRA
lora_config = LoraConfig(
    r=64,                              # Higher rank for 70B
    lora_alpha=128,
    lora_dropout=0.1,
    target_modules=["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    bias="none",
    task_type="CAUSAL_LM"
)

model = get_peft_model(model, lora_config)
# 70B model now fits on single 24GB GPU!

LoRA parameter selection

Rank (r) - capacity vs efficiency

RankTrainable ParamsMemoryQualityUse Case
4~3MMinimalLowerSimple tasks, prototyping
8~7MLowGoodRecommended starting point
16~14MMediumBetterGeneral fine-tuning
32~27MHigherHighComplex tasks
64~54MHighHighestDomain adaptation, 70B models

Alpha (lora_alpha) - scaling factor

# Rule of thumb: alpha = 2 * rank
LoraConfig(r=16, lora_alpha=32)  # Standard
LoraConfig(r=16, lora_alpha=16)  # Conservative (lower learning rate effect)
LoraConfig(r=16, lora_alpha=64)  # Aggressive (higher learning rate effect)

Target modules by architecture

# Llama / Mistral / Qwen
target_modules = ["q_proj", "v_proj", "k_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]

# GPT-2 / GPT-Neo
target_modules = ["c_attn", "c_proj", "c_fc"]

# Falcon
target_modules = ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"]

# BLOOM
target_modules = ["query_key_value", "dense", "dense_h_to_4h", "dense_4h_to_h"]

# Auto-detect all linear layers
target_modules = "all-linear"  # PEFT 0.6.0+

Loading and merging adapters

Load trained adapter

from peft import PeftModel, AutoPeftModelForCausalLM
from transformers import AutoModelForCausalLM

# Option 1: Load with PeftModel
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B")
model = PeftModel.from_pretrained(base_model, "./lora-llama-adapter")

# Option 2: Load directly (recommended)
model = AutoPeftModelForCausalLM.from_pretrained(
    "./lora-llama-adapter",
    device_map="auto"
)

Merge adapter into base model

# Merge for deployment (no adapter overhead)
merged_model = model.merge_and_unload()

# Save merged model
merged_model.save_pretrained("./llama-merged")
tokenizer.save_pretrained("./llama-merged")

# Push to Hub
merged_model.push_to_hub("username/llama-finetuned")

Multi-adapter serving

from peft import PeftModel

# Load base with first adapter
model = AutoPeftModelForCausalLM.from_pretrained("./adapter-task1")

# Load additional adapters
model.load_adapter("./adapter-task2", adapter_name="task2")
model.load_adapter("./adapter-task3", adapter_name="task3")

# Switch between adapters at runtime
model.set_adapter("task1")  # Use task1 adapter
output1 = model.generate(**inputs)

model.set_adapter("task2")  # Switch to task2
output2 = model.generate(**inputs)

# Disable adapters (use base model)
with model.disable_adapter():
    base_output = model.generate(**inputs)

PEFT methods comparison

MethodTrainable %MemorySpeedBest For
LoRA0.1-1%LowFastGeneral fine-tuning
QLoRA0.1-1%Very LowMediumMemory-constrained
AdaLoRA0.1-1%LowMediumAutomatic rank selection
IA30.01%MinimalFastestFew-shot adaptation
Prefix Tuning0.1%LowMediumGeneration control
Prompt Tuning0.001%MinimalFastSimple task adaptation
P-Tuning v20.1%LowMediumNLU tasks

IA3 (minimal parameters)

from peft import IA3Config

ia3_config = IA3Config(
    target_modules=["q_proj", "v_proj", "k_proj", "down_proj"],
    feedforward_modules=["down_proj"]
)
model = get_peft_model(model, ia3_config)
# Trains only 0.01% of parameters!

Prefix Tuning

from peft import PrefixTuningConfig

prefix_config = PrefixTuningConfig(
    task_type="CAUSAL_LM",
    num_virtual_tokens=20,      # Prepended tokens
    prefix_projection=True       # Use MLP projection
)
model = get_peft_model(model, prefix_config)

Integration patterns

With TRL (SFTTrainer)

from trl import SFTTrainer, SFTConfig
from peft import LoraConfig

lora_config = LoraConfig(r=16, lora_alpha=32, target_modules="all-linear")

trainer = SFTTrainer(
    model=model,
    args=SFTConfig(output_dir="./output", max_seq_length=512),
    train_dataset=dataset,
    peft_config=lora_config,  # Pass LoRA config directly
)
trainer.train()

With Axolotl (YAML config)

# axolotl config.yaml
adapter: lora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
  - q_proj
  - v_proj
  - k_proj
  - o_proj
lora_target_linear: true  # Target all linear layers

With vLLM (inference)

from vllm import LLM
from vllm.lora.request import LoRARequest

# Load base model with LoRA support
llm = LLM(model="meta-llama/Llama-3.1-8B", enable_lora=True)

# Serve with adapter
outputs = llm.generate(
    prompts,
    lora_request=LoRARequest("adapter1", 1, "./lora-adapter")
)

Performance benchmarks

Memory usage (Llama 3.1 8B)

MethodGPU MemoryTrainable Params
Full fine-tuning60+ GB8B (100%)
LoRA r=1618 GB14M (0.17%)
QLoRA r=166 GB14M (0.17%)
IA316 GB800K (0.01%)

Training speed (A100 80GB)

MethodTokens/secvs Full FT
Full FT2,5001x
LoRA3,2001.3x
QLoRA2,1000.84x

Quality (MMLU benchmark)

ModelFull FTLoRAQLoRA
Llama 2-7B45.344.844.1
Llama 2-13B54.854.253.5

Common issues

CUDA OOM during training

# Solution 1: Enable gradient checkpointing
model.gradient_checkpointing_enable()

# Solution 2: Reduce batch size + increase accumulation
TrainingArguments(
    per_device_train_batch_size=1,
    gradient_accumulation_steps=16
)

# Solution 3: Use QLoRA
from transformers import BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4")

Adapter not applying

# Verify adapter is active
print(model.active_adapters)  # Should show adapter name

# Check trainable parameters
model.print_trainable_parameters()

# Ensure model in training mode
model.train()

Quality degradation

# Increase rank
LoraConfig(r=32, lora_alpha=64)

# Target more modules
target_modules = "all-linear"

# Use more training data and epochs
TrainingArguments(num_train_epochs=5)

# Lower learning rate
TrainingArguments(learning_rate=1e-4)

Best practices

  1. Start with r=8-16, increase if quality insufficient
  2. Use alpha = 2 * rank as starting point
  3. Target attention + MLP layers for best quality/efficiency
  4. Enable gradient checkpointing for memory savings
  5. Save adapters frequently (small files, easy rollback)
  6. Evaluate on held-out data before merging
  7. Use QLoRA for 70B+ models on consumer hardware

References

Resources

GitHub Repository

davila7/claude-code-templates
Path: cli-tool/components/skills/ai-research/fine-tuning-peft
anthropicanthropic-claudeclaudeclaude-code

Related Skills

quantizing-models-bitsandbytes

Other

This skill quantizes LLMs to 8-bit or 4-bit precision using bitsandbytes, reducing memory usage by 50-75% with minimal accuracy loss for GPU-constrained environments. It supports multiple formats (INT8, NF4, FP4) and enables QLoRA training and 8-bit optimizers. Use it with HuggingFace Transformers when you need to fit larger models into limited memory or accelerate inference.

View skill

axolotl

Design

This skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.

View skill

unsloth

Design

This skill provides expert guidance for fast fine-tuning with Unsloth, offering 2-5x faster training and 50-80% memory reduction. It helps developers implement and debug LoRA/QLoRA optimizations for models like Llama and Mistral. Use it when working with Unsloth's APIs, features, or best practices for efficient model training.

View skill

llama-factory

Design

This skill provides expert guidance for fine-tuning LLMs using the LLaMA-Factory framework, including its no-code WebUI and support for 100+ models with QLoRA quantization. Use it when implementing, debugging, or learning best practices for LLaMA-Factory solutions in your development workflow.

View skill