tensorrt-llm
About
TensorRT-LLM is an NVIDIA-optimized library for deploying LLMs on NVIDIA GPUs, delivering up to 100x faster inference than PyTorch. Use it for production serving where you need maximum throughput, low latency, and support for features like quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/tensorrt-llmCopy and paste this command in Claude Code to install this skill
Documentation
TensorRT-LLM
NVIDIA's open-source library for optimizing LLM inference with state-of-the-art performance on NVIDIA GPUs.
When to use TensorRT-LLM
Use TensorRT-LLM when:
- Deploying on NVIDIA GPUs (A100, H100, GB200)
- Need maximum throughput (24,000+ tokens/sec on Llama 3)
- Require low latency for real-time applications
- Working with quantized models (FP8, INT4, FP4)
- Scaling across multiple GPUs or nodes
Use vLLM instead when:
- Need simpler setup and Python-first API
- Want PagedAttention without TensorRT compilation
- Working with AMD GPUs or non-NVIDIA hardware
Use llama.cpp instead when:
- Deploying on CPU or Apple Silicon
- Need edge deployment without NVIDIA GPUs
- Want simpler GGUF quantization format
Quick start
Installation
# Docker (recommended)
docker pull nvidia/tensorrt_llm:latest
# pip install
pip install tensorrt_llm==1.2.0rc3
# Requires CUDA 13.0.0, TensorRT 10.13.2, Python 3.10-3.12
Basic inference
from tensorrt_llm import LLM, SamplingParams
# Initialize model
llm = LLM(model="meta-llama/Meta-Llama-3-8B")
# Configure sampling
sampling_params = SamplingParams(
max_tokens=100,
temperature=0.7,
top_p=0.9
)
# Generate
prompts = ["Explain quantum computing"]
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
print(output.text)
Serving with trtllm-serve
# Start server (automatic model download and compilation)
trtllm-serve meta-llama/Meta-Llama-3-8B \
--tp_size 4 \ # Tensor parallelism (4 GPUs)
--max_batch_size 256 \
--max_num_tokens 4096
# Client request
curl -X POST http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "meta-llama/Meta-Llama-3-8B",
"messages": [{"role": "user", "content": "Hello!"}],
"temperature": 0.7,
"max_tokens": 100
}'
Key features
Performance optimizations
- In-flight batching: Dynamic batching during generation
- Paged KV cache: Efficient memory management
- Flash Attention: Optimized attention kernels
- Quantization: FP8, INT4, FP4 for 2-4× faster inference
- CUDA graphs: Reduced kernel launch overhead
Parallelism
- Tensor parallelism (TP): Split model across GPUs
- Pipeline parallelism (PP): Layer-wise distribution
- Expert parallelism: For Mixture-of-Experts models
- Multi-node: Scale beyond single machine
Advanced features
- Speculative decoding: Faster generation with draft models
- LoRA serving: Efficient multi-adapter deployment
- Disaggregated serving: Separate prefill and generation
Common patterns
Quantized model (FP8)
from tensorrt_llm import LLM
# Load FP8 quantized model (2× faster, 50% memory)
llm = LLM(
model="meta-llama/Meta-Llama-3-70B",
dtype="fp8",
max_num_tokens=8192
)
# Inference same as before
outputs = llm.generate(["Summarize this article..."])
Multi-GPU deployment
# Tensor parallelism across 8 GPUs
llm = LLM(
model="meta-llama/Meta-Llama-3-405B",
tensor_parallel_size=8,
dtype="fp8"
)
Batch inference
# Process 100 prompts efficiently
prompts = [f"Question {i}: ..." for i in range(100)]
outputs = llm.generate(
prompts,
sampling_params=SamplingParams(max_tokens=200)
)
# Automatic in-flight batching for maximum throughput
Performance benchmarks
Meta Llama 3-8B (H100 GPU):
- Throughput: 24,000 tokens/sec
- Latency: ~10ms per token
- vs PyTorch: 100× faster
Llama 3-70B (8× A100 80GB):
- FP8 quantization: 2× faster than FP16
- Memory: 50% reduction with FP8
Supported models
- LLaMA family: Llama 2, Llama 3, CodeLlama
- GPT family: GPT-2, GPT-J, GPT-NeoX
- Qwen: Qwen, Qwen2, QwQ
- DeepSeek: DeepSeek-V2, DeepSeek-V3
- Mixtral: Mixtral-8x7B, Mixtral-8x22B
- Vision: LLaVA, Phi-3-vision
- 100+ models on HuggingFace
References
- Optimization Guide - Quantization, batching, KV cache tuning
- Multi-GPU Setup - Tensor/pipeline parallelism, multi-node
- Serving Guide - Production deployment, monitoring, autoscaling
Resources
GitHub Repository
Related Skills
speculative-decoding
MetaThis Claude Skill accelerates LLM inference using speculative decoding techniques like Medusa and lookahead decoding, achieving 1.5-3.6× speedups. It's designed for developers optimizing latency in real-time applications or deploying models on limited compute. The implementation covers draft models, tree-based attention, and parallel token generation strategies.
sglang
MetaSGLang is a high-performance LLM serving framework that enables fast structured generation with JSON/regex outputs and constrained decoding. It's ideal for agentic workflows with tool calls and multi-turn conversations, offering significantly faster inference through RadixAttention prefix caching. Use it when you need production-scale performance with shared context across requests.
training-llms-megatron
DesignThis skill trains massive language models (2B-462B parameters) using NVIDIA's Megatron-Core framework for maximum GPU efficiency. Use it when training models over 1B parameters, requiring advanced parallelism strategies like tensor or pipeline, or needing production-ready performance. It's a proven framework used for models like Nemotron and LLaMA.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers and offers key features like tool calling, memory management, and vector store retrieval. Use it for rapid prototyping or deploying production systems like chatbots, autonomous agents, and question-answering tools.
