MCP HubMCP Hub
返回技能列表

building-recommendation-systems

jeremylongshore
更新于 Today
35 次查看
409
51
409
在 GitHub 上查看
aidesigndata

关于

This skill enables Claude to build recommendation systems using collaborative filtering, content-based filtering, or hybrid approaches. It analyzes user preferences, item features, and interaction data to generate personalized recommendations. Use it when you need to implement a recommendation engine, rank items by relevance, or work with algorithms like collaborative or content-based filtering.

技能文档

Overview

This skill enables Claude to design and implement recommendation systems tailored to specific datasets and use cases. It automates the process of selecting appropriate algorithms, preprocessing data, training models, and evaluating performance, ultimately providing users with a functional recommendation engine.

How It Works

  1. Analyzing Requirements: Claude identifies the type of recommendation needed (collaborative, content-based, hybrid), data availability, and performance goals.
  2. Generating Code: Claude generates Python code using relevant libraries (e.g., scikit-learn, TensorFlow, PyTorch) to build the recommendation model. This includes data loading, preprocessing, model training, and evaluation.
  3. Implementing Best Practices: The code incorporates best practices for recommendation system development, such as handling cold starts, addressing scalability, and mitigating bias.

When to Use This Skill

This skill activates when you need to:

  • Build a personalized movie recommendation system.
  • Create a product recommendation engine for an e-commerce platform.
  • Implement a content recommendation system for a news website.

Examples

Example 1: Personalized Movie Recommendations

User request: "Build a movie recommendation system using collaborative filtering."

The skill will:

  1. Generate code to load and preprocess movie rating data.
  2. Implement a collaborative filtering algorithm (e.g., matrix factorization) to predict user preferences.

Example 2: E-commerce Product Recommendations

User request: "Create a product recommendation engine for an online store, using content-based filtering."

The skill will:

  1. Generate code to extract features from product descriptions and user purchase history.
  2. Implement a content-based filtering algorithm to recommend similar products.

Best Practices

  • Data Preprocessing: Ensure data is properly cleaned and formatted before training the recommendation model.
  • Model Evaluation: Use appropriate metrics (e.g., precision, recall, NDCG) to evaluate the performance of the recommendation system.
  • Scalability: Design the recommendation system to handle large datasets and user bases efficiently.

Integration

This skill can be integrated with other Claude Code plugins to access data sources, deploy models, and monitor performance. For example, it can use data analysis plugins to extract features from raw data and deployment plugins to deploy the recommendation system to a production environment.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/recommendation-engine

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: plugins/ai-ml/recommendation-engine/skills/recommendation-engine
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能