MCP HubMCP Hub
返回技能列表

sglang

zechenzhangAGI
更新于 Today
107 次查看
62
2
62
在 GitHub 上查看
aiautomation

关于

SGLang is a high-performance LLM serving framework that specializes in fast, structured generation for JSON, regex, and agentic workflows using its RadixAttention prefix caching. It delivers significantly faster inference, especially for tasks with repeated prefixes, making it ideal for complex, structured outputs and multi-turn conversations. Choose SGLang over alternatives like vLLM when you need constrained decoding or are building applications with extensive prefix sharing.

技能文档

SGLang

High-performance serving framework for LLMs and VLMs with RadixAttention for automatic prefix caching.

When to use SGLang

Use SGLang when:

  • Need structured outputs (JSON, regex, grammar)
  • Building agents with repeated prefixes (system prompts, tools)
  • Agentic workflows with function calling
  • Multi-turn conversations with shared context
  • Need faster JSON decoding (3× vs standard)

Use vLLM instead when:

  • Simple text generation without structure
  • Don't need prefix caching
  • Want mature, widely-tested production system

Use TensorRT-LLM instead when:

  • Maximum single-request latency (no batching needed)
  • NVIDIA-only deployment
  • Need FP8/INT4 quantization on H100

Quick start

Installation

# pip install (recommended)
pip install "sglang[all]"

# With FlashInfer (faster, CUDA 11.8/12.1)
pip install sglang[all] flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/

# From source
git clone https://github.com/sgl-project/sglang.git
cd sglang
pip install -e "python[all]"

Launch server

# Basic server (Llama 3-8B)
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-8B-Instruct \
    --port 30000

# With RadixAttention (automatic prefix caching)
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-8B-Instruct \
    --port 30000 \
    --enable-radix-cache  # Default: enabled

# Multi-GPU (tensor parallelism)
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-70B-Instruct \
    --tp 4 \
    --port 30000

Basic inference

import sglang as sgl

# Set backend
sgl.set_default_backend(sgl.OpenAI("http://localhost:30000/v1"))

# Simple generation
@sgl.function
def simple_gen(s, question):
    s += "Q: " + question + "\n"
    s += "A:" + sgl.gen("answer", max_tokens=100)

# Run
state = simple_gen.run(question="What is the capital of France?")
print(state["answer"])
# Output: "The capital of France is Paris."

Structured JSON output

import sglang as sgl

@sgl.function
def extract_person(s, text):
    s += f"Extract person information from: {text}\n"
    s += "Output JSON:\n"

    # Constrained JSON generation
    s += sgl.gen(
        "json_output",
        max_tokens=200,
        regex=r'\{"name": "[^"]+", "age": \d+, "occupation": "[^"]+"\}'
    )

# Run
state = extract_person.run(
    text="John Smith is a 35-year-old software engineer."
)
print(state["json_output"])
# Output: {"name": "John Smith", "age": 35, "occupation": "software engineer"}

RadixAttention (Key Innovation)

What it does: Automatically caches and reuses common prefixes across requests.

Performance:

  • 5× faster for agentic workloads with shared system prompts
  • 10× faster for few-shot prompting with repeated examples
  • Zero configuration - works automatically

How it works:

  1. Builds radix tree of all processed tokens
  2. Automatically detects shared prefixes
  3. Reuses KV cache for matching prefixes
  4. Only computes new tokens

Example (Agent with system prompt):

Request 1: [SYSTEM_PROMPT] + "What's the weather?"
→ Computes full prompt (1000 tokens)

Request 2: [SAME_SYSTEM_PROMPT] + "Book a flight"
→ Reuses system prompt KV cache (998 tokens)
→ Only computes 2 new tokens
→ 5× faster!

Structured generation patterns

JSON with schema

@sgl.function
def structured_extraction(s, article):
    s += f"Article: {article}\n\n"
    s += "Extract key information as JSON:\n"

    # JSON schema constraint
    schema = {
        "type": "object",
        "properties": {
            "title": {"type": "string"},
            "author": {"type": "string"},
            "summary": {"type": "string"},
            "sentiment": {"type": "string", "enum": ["positive", "negative", "neutral"]}
        },
        "required": ["title", "author", "summary", "sentiment"]
    }

    s += sgl.gen("info", max_tokens=300, json_schema=schema)

state = structured_extraction.run(article="...")
print(state["info"])
# Output: Valid JSON matching schema

Regex-constrained generation

@sgl.function
def extract_email(s, text):
    s += f"Extract email from: {text}\n"
    s += "Email: "

    # Email regex pattern
    s += sgl.gen(
        "email",
        max_tokens=50,
        regex=r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
    )

state = extract_email.run(text="Contact [email protected] for details")
print(state["email"])
# Output: "[email protected]"

Grammar-based generation

@sgl.function
def generate_code(s, description):
    s += f"Generate Python code for: {description}\n"
    s += "```python\n"

    # EBNF grammar for Python
    python_grammar = """
    ?start: function_def
    function_def: "def" NAME "(" [parameters] "):" suite
    parameters: parameter ("," parameter)*
    parameter: NAME
    suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT
    """

    s += sgl.gen("code", max_tokens=200, grammar=python_grammar)
    s += "\n```"

Agent workflows with function calling

import sglang as sgl

# Define tools
tools = [
    {
        "name": "get_weather",
        "description": "Get weather for a location",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string"}
            }
        }
    },
    {
        "name": "book_flight",
        "description": "Book a flight",
        "parameters": {
            "type": "object",
            "properties": {
                "from": {"type": "string"},
                "to": {"type": "string"},
                "date": {"type": "string"}
            }
        }
    }
]

@sgl.function
def agent_workflow(s, user_query, tools):
    # System prompt (cached with RadixAttention)
    s += "You are a helpful assistant with access to tools.\n"
    s += f"Available tools: {tools}\n\n"

    # User query
    s += f"User: {user_query}\n"
    s += "Assistant: "

    # Generate with function calling
    s += sgl.gen(
        "response",
        max_tokens=200,
        tools=tools,  # SGLang handles tool call format
        stop=["User:", "\n\n"]
    )

# Multiple queries reuse system prompt
state1 = agent_workflow.run(
    user_query="What's the weather in NYC?",
    tools=tools
)
# First call: Computes full system prompt

state2 = agent_workflow.run(
    user_query="Book a flight to LA",
    tools=tools
)
# Second call: Reuses system prompt (5× faster)

Performance benchmarks

RadixAttention speedup

Few-shot prompting (10 examples in prompt):

  • vLLM: 2.5 sec/request
  • SGLang: 0.25 sec/request (10× faster)
  • Throughput: 4× higher

Agent workflows (1000-token system prompt):

  • vLLM: 1.8 sec/request
  • SGLang: 0.35 sec/request (5× faster)

JSON decoding:

  • Standard: 45 tok/s
  • SGLang: 135 tok/s (3× faster)

Throughput (Llama 3-8B, A100)

WorkloadvLLMSGLangSpeedup
Simple generation2500 tok/s2800 tok/s1.12×
Few-shot (10 examples)500 tok/s5000 tok/s10×
Agent (tool calls)800 tok/s4000 tok/s
JSON output600 tok/s2400 tok/s

Multi-turn conversations

@sgl.function
def multi_turn_chat(s, history, new_message):
    # System prompt (always cached)
    s += "You are a helpful AI assistant.\n\n"

    # Conversation history (cached as it grows)
    for msg in history:
        s += f"{msg['role']}: {msg['content']}\n"

    # New user message (only new part)
    s += f"User: {new_message}\n"
    s += "Assistant: "
    s += sgl.gen("response", max_tokens=200)

# Turn 1
history = []
state = multi_turn_chat.run(history=history, new_message="Hi there!")
history.append({"role": "User", "content": "Hi there!"})
history.append({"role": "Assistant", "content": state["response"]})

# Turn 2 (reuses Turn 1 KV cache)
state = multi_turn_chat.run(history=history, new_message="What's 2+2?")
# Only computes new message (much faster!)

# Turn 3 (reuses Turn 1 + Turn 2 KV cache)
state = multi_turn_chat.run(history=history, new_message="Tell me a joke")
# Progressively faster as history grows

Advanced features

Speculative decoding

# Launch with draft model (2-3× faster)
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-70B-Instruct \
    --speculative-model meta-llama/Meta-Llama-3-8B-Instruct \
    --speculative-num-steps 5

Multi-modal (vision models)

@sgl.function
def describe_image(s, image_path):
    s += sgl.image(image_path)
    s += "Describe this image in detail: "
    s += sgl.gen("description", max_tokens=200)

state = describe_image.run(image_path="photo.jpg")
print(state["description"])

Batching and parallel requests

# Automatic batching (continuous batching)
states = sgl.run_batch(
    [
        simple_gen.bind(question="What is AI?"),
        simple_gen.bind(question="What is ML?"),
        simple_gen.bind(question="What is DL?"),
    ]
)

# All 3 processed in single batch (efficient)

OpenAI-compatible API

# Start server with OpenAI API
python -m sglang.launch_server \
    --model-path meta-llama/Meta-Llama-3-8B-Instruct \
    --port 30000

# Use with OpenAI client
curl http://localhost:30000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "default",
    "messages": [
      {"role": "system", "content": "You are helpful"},
      {"role": "user", "content": "Hello"}
    ],
    "temperature": 0.7,
    "max_tokens": 100
  }'

# Works with OpenAI Python SDK
from openai import OpenAI
client = OpenAI(base_url="http://localhost:30000/v1", api_key="EMPTY")

response = client.chat.completions.create(
    model="default",
    messages=[{"role": "user", "content": "Hello"}]
)

Supported models

Text models:

  • Llama 2, Llama 3, Llama 3.1, Llama 3.2
  • Mistral, Mixtral
  • Qwen, Qwen2, QwQ
  • DeepSeek-V2, DeepSeek-V3
  • Gemma, Phi-3

Vision models:

  • LLaVA, LLaVA-OneVision
  • Phi-3-Vision
  • Qwen2-VL

100+ models from HuggingFace

Hardware support

NVIDIA: A100, H100, L4, T4 (CUDA 11.8+) AMD: MI300, MI250 (ROCm 6.0+) Intel: Xeon with GPU (coming soon) Apple: M1/M2/M3 via MPS (experimental)

References

Resources

快速安装

/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/sglang

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

zechenzhangAGI/AI-research-SKILLs
路径: 12-inference-serving/sglang
aiai-researchclaudeclaude-codeclaude-skillscodex

相关推荐技能