MCP HubMCP Hub
返回技能列表

deployment-pipeline-design

lifangda
更新于 Today
25 次查看
11
11
在 GitHub 上查看
设计automationdesign

关于

This Claude Skill helps developers design multi-stage CI/CD pipelines with approval gates, security checks, and deployment orchestration. Use it when architecting deployment workflows, setting up continuous delivery, or implementing GitOps practices to create robust pipelines that balance speed and safety.

技能文档

Deployment Pipeline Design

Architecture patterns for multi-stage CI/CD pipelines with approval gates and deployment strategies.

Purpose

Design robust, secure deployment pipelines that balance speed with safety through proper stage organization and approval workflows.

When to Use

  • Design CI/CD architecture
  • Implement deployment gates
  • Configure multi-environment pipelines
  • Establish deployment best practices
  • Implement progressive delivery

Pipeline Stages

Standard Pipeline Flow

┌─────────┐   ┌──────┐   ┌─────────┐   ┌────────┐   ┌──────────┐
│  Build  │ → │ Test │ → │ Staging │ → │ Approve│ → │Production│
└─────────┘   └──────┘   └─────────┘   └────────┘   └──────────┘

Detailed Stage Breakdown

  1. Source - Code checkout
  2. Build - Compile, package, containerize
  3. Test - Unit, integration, security scans
  4. Staging Deploy - Deploy to staging environment
  5. Integration Tests - E2E, smoke tests
  6. Approval Gate - Manual approval required
  7. Production Deploy - Canary, blue-green, rolling
  8. Verification - Health checks, monitoring
  9. Rollback - Automated rollback on failure

Approval Gate Patterns

Pattern 1: Manual Approval

# GitHub Actions
production-deploy:
  needs: staging-deploy
  environment:
    name: production
    url: https://app.example.com
  runs-on: ubuntu-latest
  steps:
    - name: Deploy to production
      run: |
        # Deployment commands

Pattern 2: Time-Based Approval

# GitLab CI
deploy:production:
  stage: deploy
  script:
    - deploy.sh production
  environment:
    name: production
  when: delayed
  start_in: 30 minutes
  only:
    - main

Pattern 3: Multi-Approver

# Azure Pipelines
stages:
- stage: Production
  dependsOn: Staging
  jobs:
  - deployment: Deploy
    environment:
      name: production
      resourceType: Kubernetes
    strategy:
      runOnce:
        preDeploy:
          steps:
          - task: ManualValidation@0
            inputs:
              notifyUsers: '[email protected]'
              instructions: 'Review staging metrics before approving'

Reference: See assets/approval-gate-template.yml

Deployment Strategies

1. Rolling Deployment

apiVersion: apps/v1
kind: Deployment
metadata:
  name: my-app
spec:
  replicas: 10
  strategy:
    type: RollingUpdate
    rollingUpdate:
      maxSurge: 2
      maxUnavailable: 1

Characteristics:

  • Gradual rollout
  • Zero downtime
  • Easy rollback
  • Best for most applications

2. Blue-Green Deployment

# Blue (current)
kubectl apply -f blue-deployment.yaml
kubectl label service my-app version=blue

# Green (new)
kubectl apply -f green-deployment.yaml
# Test green environment
kubectl label service my-app version=green

# Rollback if needed
kubectl label service my-app version=blue

Characteristics:

  • Instant switchover
  • Easy rollback
  • Doubles infrastructure cost temporarily
  • Good for high-risk deployments

3. Canary Deployment

apiVersion: argoproj.io/v1alpha1
kind: Rollout
metadata:
  name: my-app
spec:
  replicas: 10
  strategy:
    canary:
      steps:
      - setWeight: 10
      - pause: {duration: 5m}
      - setWeight: 25
      - pause: {duration: 5m}
      - setWeight: 50
      - pause: {duration: 5m}
      - setWeight: 100

Characteristics:

  • Gradual traffic shift
  • Risk mitigation
  • Real user testing
  • Requires service mesh or similar

4. Feature Flags

from flagsmith import Flagsmith

flagsmith = Flagsmith(environment_key="API_KEY")

if flagsmith.has_feature("new_checkout_flow"):
    # New code path
    process_checkout_v2()
else:
    # Existing code path
    process_checkout_v1()

Characteristics:

  • Deploy without releasing
  • A/B testing
  • Instant rollback
  • Granular control

Pipeline Orchestration

Multi-Stage Pipeline Example

name: Production Pipeline

on:
  push:
    branches: [ main ]

jobs:
  build:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v4
      - name: Build application
        run: make build
      - name: Build Docker image
        run: docker build -t myapp:${{ github.sha }} .
      - name: Push to registry
        run: docker push myapp:${{ github.sha }}

  test:
    needs: build
    runs-on: ubuntu-latest
    steps:
      - name: Unit tests
        run: make test
      - name: Security scan
        run: trivy image myapp:${{ github.sha }}

  deploy-staging:
    needs: test
    runs-on: ubuntu-latest
    environment:
      name: staging
    steps:
      - name: Deploy to staging
        run: kubectl apply -f k8s/staging/

  integration-test:
    needs: deploy-staging
    runs-on: ubuntu-latest
    steps:
      - name: Run E2E tests
        run: npm run test:e2e

  deploy-production:
    needs: integration-test
    runs-on: ubuntu-latest
    environment:
      name: production
    steps:
      - name: Canary deployment
        run: |
          kubectl apply -f k8s/production/
          kubectl argo rollouts promote my-app

  verify:
    needs: deploy-production
    runs-on: ubuntu-latest
    steps:
      - name: Health check
        run: curl -f https://app.example.com/health
      - name: Notify team
        run: |
          curl -X POST ${{ secrets.SLACK_WEBHOOK }} \
            -d '{"text":"Production deployment successful!"}'

Pipeline Best Practices

  1. Fail fast - Run quick tests first
  2. Parallel execution - Run independent jobs concurrently
  3. Caching - Cache dependencies between runs
  4. Artifact management - Store build artifacts
  5. Environment parity - Keep environments consistent
  6. Secrets management - Use secret stores (Vault, etc.)
  7. Deployment windows - Schedule deployments appropriately
  8. Monitoring integration - Track deployment metrics
  9. Rollback automation - Auto-rollback on failures
  10. Documentation - Document pipeline stages

Rollback Strategies

Automated Rollback

deploy-and-verify:
  steps:
    - name: Deploy new version
      run: kubectl apply -f k8s/

    - name: Wait for rollout
      run: kubectl rollout status deployment/my-app

    - name: Health check
      id: health
      run: |
        for i in {1..10}; do
          if curl -sf https://app.example.com/health; then
            exit 0
          fi
          sleep 10
        done
        exit 1

    - name: Rollback on failure
      if: failure()
      run: kubectl rollout undo deployment/my-app

Manual Rollback

# List revision history
kubectl rollout history deployment/my-app

# Rollback to previous version
kubectl rollout undo deployment/my-app

# Rollback to specific revision
kubectl rollout undo deployment/my-app --to-revision=3

Monitoring and Metrics

Key Pipeline Metrics

  • Deployment Frequency - How often deployments occur
  • Lead Time - Time from commit to production
  • Change Failure Rate - Percentage of failed deployments
  • Mean Time to Recovery (MTTR) - Time to recover from failure
  • Pipeline Success Rate - Percentage of successful runs
  • Average Pipeline Duration - Time to complete pipeline

Integration with Monitoring

- name: Post-deployment verification
  run: |
    # Wait for metrics stabilization
    sleep 60

    # Check error rate
    ERROR_RATE=$(curl -s "$PROMETHEUS_URL/api/v1/query?query=rate(http_errors_total[5m])" | jq '.data.result[0].value[1]')

    if (( $(echo "$ERROR_RATE > 0.01" | bc -l) )); then
      echo "Error rate too high: $ERROR_RATE"
      exit 1
    fi

Reference Files

  • references/pipeline-orchestration.md - Complex pipeline patterns
  • assets/approval-gate-template.yml - Approval workflow templates

Related Skills

  • github-actions-templates - For GitHub Actions implementation
  • gitlab-ci-patterns - For GitLab CI implementation
  • secrets-management - For secrets handling

快速安装

/plugin add https://github.com/lifangda/claude-plugins/tree/main/deployment-pipeline-design

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

lifangda/claude-plugins
路径: cli-tool/skills-library/cicd-automation/deployment-pipeline-design

相关推荐技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

project-structure

这个Skill为开发者提供全面的项目目录结构设计指南和最佳实践。它涵盖了多种项目类型包括monorepo、前后端框架、库和扩展的标准组织结构。帮助团队创建可扩展、易维护的代码架构,特别适用于新项目设计、遗留项目迁移和团队规范制定。

查看技能

issue-documentation

该Skill为开发者提供标准化的issue文档模板和指南,适用于创建bug报告、GitHub/Linear/Jira问题等场景。它能系统化地记录问题状况、复现步骤、根本原因、解决方案和影响范围,确保团队沟通清晰高效。通过实施主流问题跟踪系统的最佳实践,帮助开发者生成结构完整的故障排除文档和事件报告。

查看技能