skill-creator
关于
The skill-creator provides guidance for developers building new Claude skills or updating existing ones. It helps extend Claude's capabilities with specialized workflows, tool integrations, and domain expertise. Use this skill when you need to create modular packages that transform Claude into a specialized agent for specific tasks.
技能文档
Skill Creator
This skill provides guidance for creating effective skills.
About Skills
Skills are modular, self-contained packages that extend Claude's capabilities by providing specialized knowledge, workflows, and tools. Think of them as "onboarding guides" for specific domains or tasks—they transform Claude from a general-purpose agent into a specialized agent equipped with procedural knowledge that no model can fully possess.
What Skills Provide
- Specialized workflows - Multi-step procedures for specific domains
- Tool integrations - Instructions for working with specific file formats or APIs
- Domain expertise - Company-specific knowledge, schemas, business logic
- Bundled resources - Scripts, references, and assets for complex and repetitive tasks
Anatomy of a Skill
Every skill consists of a required SKILL.md file and optional bundled resources:
skill-name/
├── SKILL.md (required)
│ ├── YAML frontmatter metadata (required)
│ │ ├── name: (required)
│ │ └── description: (required)
│ └── Markdown instructions (required)
└── Bundled Resources (optional)
├── scripts/ - Executable code (Python/Bash/etc.)
├── references/ - Documentation intended to be loaded into context as needed
└── assets/ - Files used in output (templates, icons, fonts, etc.)
SKILL.md (required)
Metadata Quality: The name and description in YAML frontmatter determine when Claude will use the skill. Be specific about what the skill does and when to use it. Use the third-person (e.g. "This skill should be used when..." instead of "Use this skill when...").
Bundled Resources (optional)
Scripts (scripts/)
Executable code (Python/Bash/etc.) for tasks that require deterministic reliability or are repeatedly rewritten.
- When to include: When the same code is being rewritten repeatedly or deterministic reliability is needed
- Example:
scripts/rotate_pdf.pyfor PDF rotation tasks - Benefits: Token efficient, deterministic, may be executed without loading into context
- Note: Scripts may still need to be read by Claude for patching or environment-specific adjustments
References (references/)
Documentation and reference material intended to be loaded as needed into context to inform Claude's process and thinking.
- When to include: For documentation that Claude should reference while working
- Examples:
references/finance.mdfor financial schemas,references/mnda.mdfor company NDA template,references/policies.mdfor company policies,references/api_docs.mdfor API specifications - Use cases: Database schemas, API documentation, domain knowledge, company policies, detailed workflow guides
- Benefits: Keeps SKILL.md lean, loaded only when Claude determines it's needed
- Best practice: If files are large (>10k words), include grep search patterns in SKILL.md
- Avoid duplication: Information should live in either SKILL.md or references files, not both. Prefer references files for detailed information unless it's truly core to the skill—this keeps SKILL.md lean while making information discoverable without hogging the context window. Keep only essential procedural instructions and workflow guidance in SKILL.md; move detailed reference material, schemas, and examples to references files.
Assets (assets/)
Files not intended to be loaded into context, but rather used within the output Claude produces.
- When to include: When the skill needs files that will be used in the final output
- Examples:
assets/logo.pngfor brand assets,assets/slides.pptxfor PowerPoint templates,assets/frontend-template/for HTML/React boilerplate,assets/font.ttffor typography - Use cases: Templates, images, icons, boilerplate code, fonts, sample documents that get copied or modified
- Benefits: Separates output resources from documentation, enables Claude to use files without loading them into context
Progressive Disclosure Design Principle
Skills use a three-level loading system to manage context efficiently:
- Metadata (name + description) - Always in context (~100 words)
- SKILL.md body - When skill triggers (<5k words)
- Bundled resources - As needed by Claude (Unlimited*)
*Unlimited because scripts can be executed without reading into context window.
Skill Creation Process
To create a skill, follow the "Skill Creation Process" in order, skipping steps only if there is a clear reason why they are not applicable.
Step 1: Understanding the Skill with Concrete Examples
Skip this step only when the skill's usage patterns are already clearly understood. It remains valuable even when working with an existing skill.
To create an effective skill, clearly understand concrete examples of how the skill will be used. This understanding can come from either direct user examples or generated examples that are validated with user feedback.
For example, when building an image-editor skill, relevant questions include:
- "What functionality should the image-editor skill support? Editing, rotating, anything else?"
- "Can you give some examples of how this skill would be used?"
- "I can imagine users asking for things like 'Remove the red-eye from this image' or 'Rotate this image'. Are there other ways you imagine this skill being used?"
- "What would a user say that should trigger this skill?"
To avoid overwhelming users, avoid asking too many questions in a single message. Start with the most important questions and follow up as needed for better effectiveness.
Conclude this step when there is a clear sense of the functionality the skill should support.
Step 2: Planning the Reusable Skill Contents
To turn concrete examples into an effective skill, analyze each example by:
- Considering how to execute on the example from scratch
- Identifying what scripts, references, and assets would be helpful when executing these workflows repeatedly
Example: When building a pdf-editor skill to handle queries like "Help me rotate this PDF," the analysis shows:
- Rotating a PDF requires re-writing the same code each time
- A
scripts/rotate_pdf.pyscript would be helpful to store in the skill
Example: When designing a frontend-webapp-builder skill for queries like "Build me a todo app" or "Build me a dashboard to track my steps," the analysis shows:
- Writing a frontend webapp requires the same boilerplate HTML/React each time
- An
assets/hello-world/template containing the boilerplate HTML/React project files would be helpful to store in the skill
Example: When building a big-query skill to handle queries like "How many users have logged in today?" the analysis shows:
- Querying BigQuery requires re-discovering the table schemas and relationships each time
- A
references/schema.mdfile documenting the table schemas would be helpful to store in the skill
To establish the skill's contents, analyze each concrete example to create a list of the reusable resources to include: scripts, references, and assets.
Step 3: Initializing the Skill
At this point, it is time to actually create the skill.
Skip this step only if the skill being developed already exists, and iteration or packaging is needed. In this case, continue to the next step.
When creating a new skill from scratch, always run the init_skill.py script. The script conveniently generates a new template skill directory that automatically includes everything a skill requires, making the skill creation process much more efficient and reliable.
Usage:
scripts/init_skill.py <skill-name> --path <output-directory>
The script:
- Creates the skill directory at the specified path
- Generates a SKILL.md template with proper frontmatter and TODO placeholders
- Creates example resource directories:
scripts/,references/, andassets/ - Adds example files in each directory that can be customized or deleted
After initialization, customize or remove the generated SKILL.md and example files as needed.
Step 4: Edit the Skill
When editing the (newly-generated or existing) skill, remember that the skill is being created for another instance of Claude to use. Focus on including information that would be beneficial and non-obvious to Claude. Consider what procedural knowledge, domain-specific details, or reusable assets would help another Claude instance execute these tasks more effectively.
Start with Reusable Skill Contents
To begin implementation, start with the reusable resources identified above: scripts/, references/, and assets/ files. Note that this step may require user input. For example, when implementing a brand-guidelines skill, the user may need to provide brand assets or templates to store in assets/, or documentation to store in references/.
Also, delete any example files and directories not needed for the skill. The initialization script creates example files in scripts/, references/, and assets/ to demonstrate structure, but most skills won't need all of them.
Update SKILL.md
Writing Style: Write the entire skill using imperative/infinitive form (verb-first instructions), not second person. Use objective, instructional language (e.g., "To accomplish X, do Y" rather than "You should do X" or "If you need to do X"). This maintains consistency and clarity for AI consumption.
To complete SKILL.md, answer the following questions:
- What is the purpose of the skill, in a few sentences?
- When should the skill be used?
- In practice, how should Claude use the skill? All reusable skill contents developed above should be referenced so that Claude knows how to use them.
Step 5: Packaging a Skill
Once the skill is ready, it should be packaged into a distributable zip file that gets shared with the user. The packaging process automatically validates the skill first to ensure it meets all requirements:
scripts/package_skill.py <path/to/skill-folder>
Optional output directory specification:
scripts/package_skill.py <path/to/skill-folder> ./dist
The packaging script will:
-
Validate the skill automatically, checking:
- YAML frontmatter format and required fields
- Skill naming conventions and directory structure
- Description completeness and quality
- File organization and resource references
-
Package the skill if validation passes, creating a zip file named after the skill (e.g.,
my-skill.zip) that includes all files and maintains the proper directory structure for distribution.
If validation fails, the script will report the errors and exit without creating a package. Fix any validation errors and run the packaging command again.
Step 6: Iterate
After testing the skill, users may request improvements. Often this happens right after using the skill, with fresh context of how the skill performed.
Iteration workflow:
- Use the skill on real tasks
- Notice struggles or inefficiencies
- Identify how SKILL.md or bundled resources should be updated
- Implement changes and test again
References
快速安装
/plugin add https://github.com/Elios-FPT/EliosCodePracticeService/tree/main/skill-creator在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
