agentic-quality-engineering
关于
This core skill enables AI agents to autonomously perform quality engineering tasks using PACT principles. It coordinates 19 specialized QE agents for testing, analysis, validation, and quality assurance workflows. Developers should spawn these agents via the Task API to automate quality processes across the development lifecycle.
快速安装
Claude Code
推荐/plugin add https://github.com/proffesor-for-testing/agentic-qegit clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/agentic-quality-engineering在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Agentic Quality Engineering
<default_to_action> When implementing agentic QE or coordinating agents:
- SPAWN appropriate agent(s) for the task using
Tasktool with agent type - CONFIGURE agent coordination (hierarchical/mesh/sequential)
- EXECUTE with PACT principles: Proactive analysis, Autonomous operation, Collaborative feedback, Targeted risk focus
- VALIDATE results through quality gates before deployment
- LEARN from outcomes - store patterns in
aqe/learning/*namespace
Quick Agent Selection:
- Test generation needed →
qe-test-generator - Coverage gaps →
qe-coverage-analyzer - Quality decision →
qe-quality-gate - Security scan →
qe-security-scanner - Performance test →
qe-performance-tester - Full pipeline →
qe-fleet-commander
Critical Success Factors:
- Agents amplify human expertise, not replace it
- Human-in-the-loop for critical decisions
- Measure: bugs caught, time saved, coverage improved </default_to_action>
Quick Reference Card
When to Use
- Designing autonomous testing systems
- Scaling QE with intelligent agents
- Implementing multi-agent coordination
- Building CI/CD quality pipelines
PACT Principles
| Principle | Agent Behavior | Human Role |
|---|---|---|
| Proactive | Analyze pre-merge, predict risk | Set guardrails |
| Autonomous | Execute tests, fix flaky tests | Review critical |
| Collaborative | Multi-agent coordination | Provide context |
| Targeted | Risk-based prioritization | Define risk areas |
19-Agent Fleet
| Category | Agents | Primary Use |
|---|---|---|
| Core Testing (5) | test-generator, test-executor, coverage-analyzer, quality-gate, quality-analyzer | Daily testing |
| Performance/Security (2) | performance-tester, security-scanner | Non-functional |
| Strategic (3) | requirements-validator, production-intelligence, fleet-commander | Planning |
| Advanced (4) | regression-risk-analyzer, test-data-architect, api-contract-validator, flaky-test-hunter | Specialized |
| Visual/Chaos (2) | visual-tester, chaos-engineer | Edge cases |
| Deployment (1) | deployment-readiness | Release |
| Analysis (1) | code-complexity | Maintainability |
Coordination Patterns
Hierarchical: fleet-commander → [generators] → [executors] → quality-gate
Mesh: test-gen ↔ coverage ↔ quality (peer decisions)
Sequential: risk-analyzer → test-gen → executor → coverage → gate
Success Criteria
✅ 10x deployment frequency with same/better quality ✅ Coverage gaps detected in real-time ✅ Bugs caught pre-production ❌ Agents acting without human oversight on critical decisions ❌ Deploying all 19 agents at once (start with 1-2)
Core Concepts
QE Evolution
| Stage | Approach | Limitation |
|---|---|---|
| Traditional | Manual everything | Human bottleneck |
| Automation | Scripts + fixed scenarios | Needs orchestration |
| Agentic | AI agents + human judgment | Requires trust-building |
Core Premise: Agents amplify human expertise for 10x scale.
Key Capabilities
1. Intelligent Test Generation
// Agent analyzes code change, generates targeted tests
const tests = await qeTestGenerator.generate(prDiff);
// → Happy path, edge cases, error handling tests
2. Pattern Detection - Scan logs, find anomalies, correlate errors
3. Adaptive Strategy - Adjust test focus based on risk signals
4. Root Cause Analysis - Link failures to code changes, suggest fixes
Agent Coordination
Memory Namespaces
aqe/test-plan/* - Test planning decisions
aqe/coverage/* - Coverage analysis results
aqe/quality/* - Quality metrics and gates
aqe/learning/* - Patterns and Q-values
aqe/coordination/* - Cross-agent state
Memory Operations (MCP Tools)
CRITICAL: Always use mcp__agentic-qe__memory_store with persist: true for learnings.
1. Store data to persistent memory:
// Store test plan decisions (persisted to .agentic-qe/memory.db)
mcp__agentic_qe__memory_store({
key: "aqe/test-plan/pr-123",
namespace: "aqe/test-plan",
value: {
prNumber: 123,
riskLevel: "medium",
requiredCoverage: 85,
testTypes: ["unit", "integration"],
estimatedTime: 1800
},
persist: true, // ⚠️ REQUIRED for cross-session persistence
ttl: 604800 // 7 days (0 = permanent)
})
2. Retrieve prior learnings before task:
// Query patterns before starting test generation
const priorData = await mcp__agentic_qe__memory_retrieve({
key: "aqe/learning/patterns/test-generation/*",
namespace: "aqe/learning",
includeMetadata: true
})
// Use patterns to guide current task
if (priorData.success) {
console.log(`Loaded ${priorData.patterns.length} prior patterns`);
}
3. Store coverage analysis results:
mcp__agentic_qe__memory_store({
key: "aqe/coverage/auth-module",
namespace: "aqe/coverage",
value: {
moduleId: "auth-module",
currentCoverage: 78,
gaps: ["error-handling", "edge-cases"],
suggestedTests: 12,
priority: "high"
},
persist: true,
ttl: 1209600 // 14 days
})
Three-Phase Memory Protocol
For coordinated multi-agent tasks, use the STATUS → PROGRESS → COMPLETE pattern:
// PHASE 1: STATUS - Task starting
mcp__agentic_qe__memory_store({
key: "aqe/coordination/task-123/status",
namespace: "aqe/coordination",
value: { status: "running", agent: "qe-test-generator", startTime: Date.now() },
persist: true
})
// PHASE 2: PROGRESS - Intermediate updates
mcp__agentic_qe__memory_store({
key: "aqe/coordination/task-123/progress",
namespace: "aqe/coordination",
value: { progress: 50, action: "generating-unit-tests", testsGenerated: 25 },
persist: true
})
// PHASE 3: COMPLETE - Task finished
mcp__agentic_qe__memory_store({
key: "aqe/coordination/task-123/complete",
namespace: "aqe/coordination",
value: {
status: "complete",
result: "success",
testsGenerated: 47,
coverageAchieved: 92.3,
duration: 15000
},
persist: true
})
Blackboard Events
| Event | Trigger | Subscribers |
|---|---|---|
test:generated | New tests created | executor, coverage |
coverage:gap | Gap detected | test-generator |
quality:decision | Gate evaluated | fleet-commander |
security:finding | Vulnerability found | quality-gate |
Example: PR Quality Pipeline
// 1. Risk analysis
const risks = await Task("Analyze PR", prDiff, "qe-regression-risk-analyzer");
// 2. Generate tests for risks
const tests = await Task("Generate tests", risks, "qe-test-generator");
// 3. Execute + analyze
const results = await Task("Run tests", tests, "qe-test-executor");
const coverage = await Task("Check coverage", results, "qe-coverage-analyzer");
// 4. Quality decision
const decision = await Task("Evaluate", {results, coverage}, "qe-quality-gate");
// → GO/NO-GO with rationale
Implementation Phases
| Phase | Duration | Goal | Agent(s) |
|---|---|---|---|
| Experiment | Weeks 1-4 | Validate one use case | 1 agent |
| Integrate | Months 2-3 | CI/CD pipeline | 3-4 agents |
| Scale | Months 4-6 | Multiple use cases | 8+ agents |
| Evolve | Ongoing | Continuous learning | Full fleet |
Phase 1 Example
# Week 1: Deploy single agent
aqe agent spawn qe-test-generator
# Weeks 2-3: Generate tests for 10 PRs
# Track: bugs found, test quality, review time
# Week 4: Measure impact
aqe agent metrics qe-test-generator
# → Tests: 150, Bugs: 12, Time saved: 8h
Limitations & Strengths
Agents Excel At
- Volume: Scan thousands of logs in seconds
- Patterns: Find correlations humans miss
- Tireless: 24/7 testing and monitoring
- Speed: Instant code change analysis
Agents Need Humans For
- Business context and priorities
- Ethical judgment and trade-offs
- Creative exploration ("what if" scenarios)
- Domain expertise (healthcare, finance, legal)
Best Practices
| Do | Don't |
|---|---|
| Start with one agent, one use case | Deploy all 18 at once |
| Build feedback loops early | Deploy and forget |
| Human reviews agent output | Auto-merge without review |
| Measure bugs caught, time saved | Track vanity metrics (test count) |
| Build trust gradually | Give full autonomy immediately |
Trust Progression
Month 1: Agent suggests → Human decides
Month 2: Agent acts → Human reviews after
Month 3: Agent autonomous on low-risk
Month 4: Agent handles critical with oversight
Agent Coordination Hints
coordination:
topology: hierarchical
commander: qe-fleet-commander
memory_namespace: aqe/coordination
blackboard_topic: qe-fleet
preload_skills:
- agentic-quality-engineering # Always (this skill)
- risk-based-testing # For prioritization
- quality-metrics # For measurement
agent_assignments:
qe-test-generator: [api-testing-patterns, tdd-london-chicago]
qe-coverage-analyzer: [quality-metrics, risk-based-testing]
qe-security-scanner: [security-testing, risk-based-testing]
qe-performance-tester: [performance-testing]
Related Skills
holistic-testing-pact- PACT principles deep diverisk-based-testing- Prioritize agent focusquality-metrics- Measure agent effectivenessapi-testing-patterns,security-testing,performance-testing- Specialized testing
Resources
- Agent definitions:
.claude/agents/ - CLI:
aqe agent --help - Fleet status:
aqe fleet status
Success Metric: Deploy 10x more frequently with same or better quality through intelligent agent collaboration.
GitHub 仓库
相关推荐技能
when-orchestrating-swarm-use-swarm-orchestration
其他该技能用于复杂多智能体集群的协调管理,支持任务智能分解、分布式执行与结果综合。它适用于需要多个专业代理协同处理复杂工作流的场景,能生成任务分解树并提供性能指标。开发者可借此实现跨代理的高效协调与监控。
swarm-advanced
其他该Skill提供高级群组协调模式,用于研究、开发和测试等复杂分布式工作流。它支持网状拓扑等协调策略,可通过MCP工具或CLI命令创建和管理多个智能体。开发者能快速初始化群组、生成专业化智能体并协调分布式任务执行。
when-using-advanced-swarm-use-swarm-advanced
其他该Skill为开发者提供复杂多智能体系统的高级集群协调能力,支持动态拓扑切换和自组织行为。它适用于需要自适应拓扑选择和智能协调的复杂集群编排场景,可输出动态拓扑配置和性能优化报告。开发者需具备集群拓扑理解和多代理协调经验才能有效使用。
swarm-advanced
其他该Skill为开发者提供高级群组协调模式,用于分布式研究、开发和测试工作流。它支持通过MCP工具和CLI命令初始化群组拓扑、生成专业代理并协调复杂任务。适用于需要并行处理和分布式协调的研发场景,可快速搭建多代理协作系统。
