MCP HubMCP Hub
返回技能列表

microservices-patterns

camoneart
更新于 Today
9 次查看
2
2
在 GitHub 上查看
design

关于

This Claude Skill helps developers design microservices architectures by providing patterns for service decomposition, event-driven communication, and resilience. Use it when building distributed systems, decomposing monoliths, or implementing microservices to establish proper service boundaries and manage distributed data.

技能文档

Microservices Patterns

Master microservices architecture patterns including service boundaries, inter-service communication, data management, and resilience patterns for building distributed systems.

When to Use This Skill

  • Decomposing monoliths into microservices
  • Designing service boundaries and contracts
  • Implementing inter-service communication
  • Managing distributed data and transactions
  • Building resilient distributed systems
  • Implementing service discovery and load balancing
  • Designing event-driven architectures

Core Concepts

1. Service Decomposition Strategies

By Business Capability

  • Organize services around business functions
  • Each service owns its domain
  • Example: OrderService, PaymentService, InventoryService

By Subdomain (DDD)

  • Core domain, supporting subdomains
  • Bounded contexts map to services
  • Clear ownership and responsibility

Strangler Fig Pattern

  • Gradually extract from monolith
  • New functionality as microservices
  • Proxy routes to old/new systems

2. Communication Patterns

Synchronous (Request/Response)

  • REST APIs
  • gRPC
  • GraphQL

Asynchronous (Events/Messages)

  • Event streaming (Kafka)
  • Message queues (RabbitMQ, SQS)
  • Pub/Sub patterns

3. Data Management

Database Per Service

  • Each service owns its data
  • No shared databases
  • Loose coupling

Saga Pattern

  • Distributed transactions
  • Compensating actions
  • Eventual consistency

4. Resilience Patterns

Circuit Breaker

  • Fail fast on repeated errors
  • Prevent cascade failures

Retry with Backoff

  • Transient fault handling
  • Exponential backoff

Bulkhead

  • Isolate resources
  • Limit impact of failures

Service Decomposition Patterns

Pattern 1: By Business Capability

# E-commerce example

# Order Service
class OrderService:
    """Handles order lifecycle."""

    async def create_order(self, order_data: dict) -> Order:
        order = Order.create(order_data)

        # Publish event for other services
        await self.event_bus.publish(
            OrderCreatedEvent(
                order_id=order.id,
                customer_id=order.customer_id,
                items=order.items,
                total=order.total
            )
        )

        return order

# Payment Service (separate service)
class PaymentService:
    """Handles payment processing."""

    async def process_payment(self, payment_request: PaymentRequest) -> PaymentResult:
        # Process payment
        result = await self.payment_gateway.charge(
            amount=payment_request.amount,
            customer=payment_request.customer_id
        )

        if result.success:
            await self.event_bus.publish(
                PaymentCompletedEvent(
                    order_id=payment_request.order_id,
                    transaction_id=result.transaction_id
                )
            )

        return result

# Inventory Service (separate service)
class InventoryService:
    """Handles inventory management."""

    async def reserve_items(self, order_id: str, items: List[OrderItem]) -> ReservationResult:
        # Check availability
        for item in items:
            available = await self.inventory_repo.get_available(item.product_id)
            if available < item.quantity:
                return ReservationResult(
                    success=False,
                    error=f"Insufficient inventory for {item.product_id}"
                )

        # Reserve items
        reservation = await self.create_reservation(order_id, items)

        await self.event_bus.publish(
            InventoryReservedEvent(
                order_id=order_id,
                reservation_id=reservation.id
            )
        )

        return ReservationResult(success=True, reservation=reservation)

Pattern 2: API Gateway

from fastapi import FastAPI, HTTPException, Depends
import httpx
from circuitbreaker import circuit

app = FastAPI()

class APIGateway:
    """Central entry point for all client requests."""

    def __init__(self):
        self.order_service_url = "http://order-service:8000"
        self.payment_service_url = "http://payment-service:8001"
        self.inventory_service_url = "http://inventory-service:8002"
        self.http_client = httpx.AsyncClient(timeout=5.0)

    @circuit(failure_threshold=5, recovery_timeout=30)
    async def call_order_service(self, path: str, method: str = "GET", **kwargs):
        """Call order service with circuit breaker."""
        response = await self.http_client.request(
            method,
            f"{self.order_service_url}{path}",
            **kwargs
        )
        response.raise_for_status()
        return response.json()

    async def create_order_aggregate(self, order_id: str) -> dict:
        """Aggregate data from multiple services."""
        # Parallel requests
        order, payment, inventory = await asyncio.gather(
            self.call_order_service(f"/orders/{order_id}"),
            self.call_payment_service(f"/payments/order/{order_id}"),
            self.call_inventory_service(f"/reservations/order/{order_id}"),
            return_exceptions=True
        )

        # Handle partial failures
        result = {"order": order}
        if not isinstance(payment, Exception):
            result["payment"] = payment
        if not isinstance(inventory, Exception):
            result["inventory"] = inventory

        return result

@app.post("/api/orders")
async def create_order(
    order_data: dict,
    gateway: APIGateway = Depends()
):
    """API Gateway endpoint."""
    try:
        # Route to order service
        order = await gateway.call_order_service(
            "/orders",
            method="POST",
            json=order_data
        )
        return {"order": order}
    except httpx.HTTPError as e:
        raise HTTPException(status_code=503, detail="Order service unavailable")

Communication Patterns

Pattern 1: Synchronous REST Communication

# Service A calls Service B
import httpx
from tenacity import retry, stop_after_attempt, wait_exponential

class ServiceClient:
    """HTTP client with retries and timeout."""

    def __init__(self, base_url: str):
        self.base_url = base_url
        self.client = httpx.AsyncClient(
            timeout=httpx.Timeout(5.0, connect=2.0),
            limits=httpx.Limits(max_keepalive_connections=20)
        )

    @retry(
        stop=stop_after_attempt(3),
        wait=wait_exponential(multiplier=1, min=2, max=10)
    )
    async def get(self, path: str, **kwargs):
        """GET with automatic retries."""
        response = await self.client.get(f"{self.base_url}{path}", **kwargs)
        response.raise_for_status()
        return response.json()

    async def post(self, path: str, **kwargs):
        """POST request."""
        response = await self.client.post(f"{self.base_url}{path}", **kwargs)
        response.raise_for_status()
        return response.json()

# Usage
payment_client = ServiceClient("http://payment-service:8001")
result = await payment_client.post("/payments", json=payment_data)

Pattern 2: Asynchronous Event-Driven

# Event-driven communication with Kafka
from aiokafka import AIOKafkaProducer, AIOKafkaConsumer
import json
from dataclasses import dataclass, asdict
from datetime import datetime

@dataclass
class DomainEvent:
    event_id: str
    event_type: str
    aggregate_id: str
    occurred_at: datetime
    data: dict

class EventBus:
    """Event publishing and subscription."""

    def __init__(self, bootstrap_servers: List[str]):
        self.bootstrap_servers = bootstrap_servers
        self.producer = None

    async def start(self):
        self.producer = AIOKafkaProducer(
            bootstrap_servers=self.bootstrap_servers,
            value_serializer=lambda v: json.dumps(v).encode()
        )
        await self.producer.start()

    async def publish(self, event: DomainEvent):
        """Publish event to Kafka topic."""
        topic = event.event_type
        await self.producer.send_and_wait(
            topic,
            value=asdict(event),
            key=event.aggregate_id.encode()
        )

    async def subscribe(self, topic: str, handler: callable):
        """Subscribe to events."""
        consumer = AIOKafkaConsumer(
            topic,
            bootstrap_servers=self.bootstrap_servers,
            value_deserializer=lambda v: json.loads(v.decode()),
            group_id="my-service"
        )
        await consumer.start()

        try:
            async for message in consumer:
                event_data = message.value
                await handler(event_data)
        finally:
            await consumer.stop()

# Order Service publishes event
async def create_order(order_data: dict):
    order = await save_order(order_data)

    event = DomainEvent(
        event_id=str(uuid.uuid4()),
        event_type="OrderCreated",
        aggregate_id=order.id,
        occurred_at=datetime.now(),
        data={
            "order_id": order.id,
            "customer_id": order.customer_id,
            "total": order.total
        }
    )

    await event_bus.publish(event)

# Inventory Service listens for OrderCreated
async def handle_order_created(event_data: dict):
    """React to order creation."""
    order_id = event_data["data"]["order_id"]
    items = event_data["data"]["items"]

    # Reserve inventory
    await reserve_inventory(order_id, items)

Pattern 3: Saga Pattern (Distributed Transactions)

# Saga orchestration for order fulfillment
from enum import Enum
from typing import List, Callable

class SagaStep:
    """Single step in saga."""

    def __init__(
        self,
        name: str,
        action: Callable,
        compensation: Callable
    ):
        self.name = name
        self.action = action
        self.compensation = compensation

class SagaStatus(Enum):
    PENDING = "pending"
    COMPLETED = "completed"
    COMPENSATING = "compensating"
    FAILED = "failed"

class OrderFulfillmentSaga:
    """Orchestrated saga for order fulfillment."""

    def __init__(self):
        self.steps: List[SagaStep] = [
            SagaStep(
                "create_order",
                action=self.create_order,
                compensation=self.cancel_order
            ),
            SagaStep(
                "reserve_inventory",
                action=self.reserve_inventory,
                compensation=self.release_inventory
            ),
            SagaStep(
                "process_payment",
                action=self.process_payment,
                compensation=self.refund_payment
            ),
            SagaStep(
                "confirm_order",
                action=self.confirm_order,
                compensation=self.cancel_order_confirmation
            )
        ]

    async def execute(self, order_data: dict) -> SagaResult:
        """Execute saga steps."""
        completed_steps = []
        context = {"order_data": order_data}

        try:
            for step in self.steps:
                # Execute step
                result = await step.action(context)
                if not result.success:
                    # Compensate
                    await self.compensate(completed_steps, context)
                    return SagaResult(
                        status=SagaStatus.FAILED,
                        error=result.error
                    )

                completed_steps.append(step)
                context.update(result.data)

            return SagaResult(status=SagaStatus.COMPLETED, data=context)

        except Exception as e:
            # Compensate on error
            await self.compensate(completed_steps, context)
            return SagaResult(status=SagaStatus.FAILED, error=str(e))

    async def compensate(self, completed_steps: List[SagaStep], context: dict):
        """Execute compensating actions in reverse order."""
        for step in reversed(completed_steps):
            try:
                await step.compensation(context)
            except Exception as e:
                # Log compensation failure
                print(f"Compensation failed for {step.name}: {e}")

    # Step implementations
    async def create_order(self, context: dict) -> StepResult:
        order = await order_service.create(context["order_data"])
        return StepResult(success=True, data={"order_id": order.id})

    async def cancel_order(self, context: dict):
        await order_service.cancel(context["order_id"])

    async def reserve_inventory(self, context: dict) -> StepResult:
        result = await inventory_service.reserve(
            context["order_id"],
            context["order_data"]["items"]
        )
        return StepResult(
            success=result.success,
            data={"reservation_id": result.reservation_id}
        )

    async def release_inventory(self, context: dict):
        await inventory_service.release(context["reservation_id"])

    async def process_payment(self, context: dict) -> StepResult:
        result = await payment_service.charge(
            context["order_id"],
            context["order_data"]["total"]
        )
        return StepResult(
            success=result.success,
            data={"transaction_id": result.transaction_id},
            error=result.error
        )

    async def refund_payment(self, context: dict):
        await payment_service.refund(context["transaction_id"])

Resilience Patterns

Circuit Breaker Pattern

from enum import Enum
from datetime import datetime, timedelta
from typing import Callable, Any

class CircuitState(Enum):
    CLOSED = "closed"  # Normal operation
    OPEN = "open"      # Failing, reject requests
    HALF_OPEN = "half_open"  # Testing if recovered

class CircuitBreaker:
    """Circuit breaker for service calls."""

    def __init__(
        self,
        failure_threshold: int = 5,
        recovery_timeout: int = 30,
        success_threshold: int = 2
    ):
        self.failure_threshold = failure_threshold
        self.recovery_timeout = recovery_timeout
        self.success_threshold = success_threshold

        self.failure_count = 0
        self.success_count = 0
        self.state = CircuitState.CLOSED
        self.opened_at = None

    async def call(self, func: Callable, *args, **kwargs) -> Any:
        """Execute function with circuit breaker."""

        if self.state == CircuitState.OPEN:
            if self._should_attempt_reset():
                self.state = CircuitState.HALF_OPEN
            else:
                raise CircuitBreakerOpenError("Circuit breaker is open")

        try:
            result = await func(*args, **kwargs)
            self._on_success()
            return result

        except Exception as e:
            self._on_failure()
            raise

    def _on_success(self):
        """Handle successful call."""
        self.failure_count = 0

        if self.state == CircuitState.HALF_OPEN:
            self.success_count += 1
            if self.success_count >= self.success_threshold:
                self.state = CircuitState.CLOSED
                self.success_count = 0

    def _on_failure(self):
        """Handle failed call."""
        self.failure_count += 1

        if self.failure_count >= self.failure_threshold:
            self.state = CircuitState.OPEN
            self.opened_at = datetime.now()

        if self.state == CircuitState.HALF_OPEN:
            self.state = CircuitState.OPEN
            self.opened_at = datetime.now()

    def _should_attempt_reset(self) -> bool:
        """Check if enough time passed to try again."""
        return (
            datetime.now() - self.opened_at
            > timedelta(seconds=self.recovery_timeout)
        )

# Usage
breaker = CircuitBreaker(failure_threshold=5, recovery_timeout=30)

async def call_payment_service(payment_data: dict):
    return await breaker.call(
        payment_client.process_payment,
        payment_data
    )

Resources

  • references/service-decomposition-guide.md: Breaking down monoliths
  • references/communication-patterns.md: Sync vs async patterns
  • references/saga-implementation.md: Distributed transactions
  • assets/circuit-breaker.py: Production circuit breaker
  • assets/event-bus-template.py: Kafka event bus implementation
  • assets/api-gateway-template.py: Complete API gateway

Best Practices

  1. Service Boundaries: Align with business capabilities
  2. Database Per Service: No shared databases
  3. API Contracts: Versioned, backward compatible
  4. Async When Possible: Events over direct calls
  5. Circuit Breakers: Fail fast on service failures
  6. Distributed Tracing: Track requests across services
  7. Service Registry: Dynamic service discovery
  8. Health Checks: Liveness and readiness probes

Common Pitfalls

  • Distributed Monolith: Tightly coupled services
  • Chatty Services: Too many inter-service calls
  • Shared Databases: Tight coupling through data
  • No Circuit Breakers: Cascade failures
  • Synchronous Everything: Tight coupling, poor resilience
  • Premature Microservices: Starting with microservices
  • Ignoring Network Failures: Assuming reliable network
  • No Compensation Logic: Can't undo failed transactions

快速安装

/plugin add https://github.com/camoneart/claude-code/tree/main/microservices-patterns

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

camoneart/claude-code
路径: skills/microservices-patterns

相关推荐技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

project-structure

这个Skill为开发者提供全面的项目目录结构设计指南和最佳实践。它涵盖了多种项目类型包括monorepo、前后端框架、库和扩展的标准组织结构。帮助团队创建可扩展、易维护的代码架构,特别适用于新项目设计、遗留项目迁移和团队规范制定。

查看技能

issue-documentation

该Skill为开发者提供标准化的issue文档模板和指南,适用于创建bug报告、GitHub/Linear/Jira问题等场景。它能系统化地记录问题状况、复现步骤、根本原因、解决方案和影响范围,确保团队沟通清晰高效。通过实施主流问题跟踪系统的最佳实践,帮助开发者生成结构完整的故障排除文档和事件报告。

查看技能

llamaindex

LlamaIndex是一个专门构建RAG应用的开发框架,提供300多种数据连接器用于文档摄取、索引和查询。它具备向量索引、查询引擎和智能代理等核心功能,支持构建文档问答、知识检索和聊天机器人等数据密集型应用。开发者可用它快速搭建连接私有数据与LLM的RAG管道。

查看技能