MCP HubMCP Hub
返回技能列表

explaining-machine-learning-models

jeremylongshore
更新于 Today
39 次查看
409
51
409
在 GitHub 上查看
ai

关于

This skill enables Claude to explain machine learning model predictions and behavior using techniques like SHAP and LIME. It provides feature importance analysis and model interpretability for debugging performance, ensuring fairness, or communicating insights to stakeholders. Use it when you need to understand why a model makes specific predictions or to identify influential features.

技能文档

Overview

This skill empowers Claude to analyze and explain machine learning models. It helps users understand why a model makes certain predictions, identify the most influential features, and gain insights into the model's overall behavior.

How It Works

  1. Analyze Context: Claude analyzes the user's request and the available model data.
  2. Select Explanation Technique: Claude chooses the most appropriate explanation technique (e.g., SHAP, LIME) based on the model type and the user's needs.
  3. Generate Explanations: Claude uses the selected technique to generate explanations for model predictions.
  4. Present Results: Claude presents the explanations in a clear and concise format, highlighting key insights and feature importances.

When to Use This Skill

This skill activates when you need to:

  • Understand why a machine learning model made a specific prediction.
  • Identify the most important features influencing a model's output.
  • Debug model performance issues by identifying unexpected feature interactions.
  • Communicate model insights to non-technical stakeholders.
  • Ensure fairness and transparency in model predictions.

Examples

Example 1: Understanding Loan Application Decisions

User request: "Explain why this loan application was rejected."

The skill will:

  1. Analyze the loan application data and the model's prediction.
  2. Calculate SHAP values to determine the contribution of each feature to the rejection decision.
  3. Present the results, highlighting the features that most strongly influenced the outcome, such as credit score or debt-to-income ratio.

Example 2: Identifying Key Factors in Customer Churn

User request: "Interpret the customer churn model and identify the most important factors."

The skill will:

  1. Analyze the customer churn model and its predictions.
  2. Use LIME to generate local explanations for individual customer churn predictions.
  3. Aggregate the LIME explanations to identify the most important features driving churn, such as customer tenure or service usage.

Best Practices

  • Model Type: Choose the explanation technique that is most appropriate for the model type (e.g., tree-based models, neural networks).
  • Data Preprocessing: Ensure that the data used for explanation is properly preprocessed and aligned with the model's input format.
  • Visualization: Use visualizations to effectively communicate model insights and feature importances.

Integration

This skill integrates with other data analysis and visualization plugins to provide a comprehensive model understanding workflow. It can be used in conjunction with data cleaning and preprocessing plugins to ensure data quality and with visualization tools to present the explanation results in an informative way.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/model-explainability-tool

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: plugins/ai-ml/model-explainability-tool/skills/model-explainability-tool
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能