MCP HubMCP Hub
返回技能列表

multi-cloud-architecture

lifangda
更新于 Today
26 次查看
11
11
在 GitHub 上查看
design

关于

This Claude Skill provides a decision framework to design multi-cloud architectures across AWS, Azure, and GCP. It helps developers select and integrate the best services from different providers to avoid vendor lock-in and leverage best-of-breed solutions. Use it when building cloud-agnostic systems, migrating between providers, or optimizing workloads across multiple clouds.

技能文档

Multi-Cloud Architecture

Decision framework and patterns for architecting applications across AWS, Azure, and GCP.

Purpose

Design cloud-agnostic architectures and make informed decisions about service selection across cloud providers.

When to Use

  • Design multi-cloud strategies
  • Migrate between cloud providers
  • Select cloud services for specific workloads
  • Implement cloud-agnostic architectures
  • Optimize costs across providers

Cloud Service Comparison

Compute Services

AWSAzureGCPUse Case
EC2Virtual MachinesCompute EngineIaaS VMs
ECSContainer InstancesCloud RunContainers
EKSAKSGKEKubernetes
LambdaFunctionsCloud FunctionsServerless
FargateContainer AppsCloud RunManaged containers

Storage Services

AWSAzureGCPUse Case
S3Blob StorageCloud StorageObject storage
EBSManaged DisksPersistent DiskBlock storage
EFSAzure FilesFilestoreFile storage
GlacierArchive StorageArchive StorageCold storage

Database Services

AWSAzureGCPUse Case
RDSSQL DatabaseCloud SQLManaged SQL
DynamoDBCosmos DBFirestoreNoSQL
AuroraPostgreSQL/MySQLCloud SpannerDistributed SQL
ElastiCacheCache for RedisMemorystoreCaching

Reference: See references/service-comparison.md for complete comparison

Multi-Cloud Patterns

Pattern 1: Single Provider with DR

  • Primary workload in one cloud
  • Disaster recovery in another
  • Database replication across clouds
  • Automated failover

Pattern 2: Best-of-Breed

  • Use best service from each provider
  • AI/ML on GCP
  • Enterprise apps on Azure
  • General compute on AWS

Pattern 3: Geographic Distribution

  • Serve users from nearest cloud region
  • Data sovereignty compliance
  • Global load balancing
  • Regional failover

Pattern 4: Cloud-Agnostic Abstraction

  • Kubernetes for compute
  • PostgreSQL for database
  • S3-compatible storage (MinIO)
  • Open source tools

Cloud-Agnostic Architecture

Use Cloud-Native Alternatives

  • Compute: Kubernetes (EKS/AKS/GKE)
  • Database: PostgreSQL/MySQL (RDS/SQL Database/Cloud SQL)
  • Message Queue: Apache Kafka (MSK/Event Hubs/Confluent)
  • Cache: Redis (ElastiCache/Azure Cache/Memorystore)
  • Object Storage: S3-compatible API
  • Monitoring: Prometheus/Grafana
  • Service Mesh: Istio/Linkerd

Abstraction Layers

Application Layer
    ↓
Infrastructure Abstraction (Terraform)
    ↓
Cloud Provider APIs
    ↓
AWS / Azure / GCP

Cost Comparison

Compute Pricing Factors

  • AWS: On-demand, Reserved, Spot, Savings Plans
  • Azure: Pay-as-you-go, Reserved, Spot
  • GCP: On-demand, Committed use, Preemptible

Cost Optimization Strategies

  1. Use reserved/committed capacity (30-70% savings)
  2. Leverage spot/preemptible instances
  3. Right-size resources
  4. Use serverless for variable workloads
  5. Optimize data transfer costs
  6. Implement lifecycle policies
  7. Use cost allocation tags
  8. Monitor with cloud cost tools

Reference: See references/multi-cloud-patterns.md

Migration Strategy

Phase 1: Assessment

  • Inventory current infrastructure
  • Identify dependencies
  • Assess cloud compatibility
  • Estimate costs

Phase 2: Pilot

  • Select pilot workload
  • Implement in target cloud
  • Test thoroughly
  • Document learnings

Phase 3: Migration

  • Migrate workloads incrementally
  • Maintain dual-run period
  • Monitor performance
  • Validate functionality

Phase 4: Optimization

  • Right-size resources
  • Implement cloud-native services
  • Optimize costs
  • Enhance security

Best Practices

  1. Use infrastructure as code (Terraform/OpenTofu)
  2. Implement CI/CD pipelines for deployments
  3. Design for failure across clouds
  4. Use managed services when possible
  5. Implement comprehensive monitoring
  6. Automate cost optimization
  7. Follow security best practices
  8. Document cloud-specific configurations
  9. Test disaster recovery procedures
  10. Train teams on multiple clouds

Reference Files

  • references/service-comparison.md - Complete service comparison
  • references/multi-cloud-patterns.md - Architecture patterns

Related Skills

  • terraform-module-library - For IaC implementation
  • cost-optimization - For cost management
  • hybrid-cloud-networking - For connectivity

快速安装

/plugin add https://github.com/lifangda/claude-plugins/tree/main/multi-cloud-architecture

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

lifangda/claude-plugins
路径: cli-tool/skills-library/cloud-infrastructure/multi-cloud-architecture

相关推荐技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

project-structure

这个Skill为开发者提供全面的项目目录结构设计指南和最佳实践。它涵盖了多种项目类型包括monorepo、前后端框架、库和扩展的标准组织结构。帮助团队创建可扩展、易维护的代码架构,特别适用于新项目设计、遗留项目迁移和团队规范制定。

查看技能

issue-documentation

该Skill为开发者提供标准化的issue文档模板和指南,适用于创建bug报告、GitHub/Linear/Jira问题等场景。它能系统化地记录问题状况、复现步骤、根本原因、解决方案和影响范围,确保团队沟通清晰高效。通过实施主流问题跟踪系统的最佳实践,帮助开发者生成结构完整的故障排除文档和事件报告。

查看技能

llamaindex

LlamaIndex是一个专门构建RAG应用的开发框架,提供300多种数据连接器用于文档摄取、索引和查询。它具备向量索引、查询引擎和智能代理等核心功能,支持构建文档问答、知识检索和聊天机器人等数据密集型应用。开发者可用它快速搭建连接私有数据与LLM的RAG管道。

查看技能