mpep-search
关于
This skill provides hybrid RAG search across USPTO patent documentation (MPEP, statutes, regulations) with post-January 2024 updates. It combines FAISS vector search, BM25 keyword matching, HyDE, and cross-encoder reranking for precise results. Use it when you need to query or retrieve specific passages from official U.S. patent examination materials.
快速安装
Claude Code
推荐/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creatorgit clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/mpep-search在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
MPEP Search Skill
Search MPEP corpus through hybrid RAG (FAISS vector + BM25 keyword + HyDE + cross-encoder reranking).
Sources:
- MPEP: Manual of Patent Examining Procedure
- 35 USC: United States Code Title 35
- 37 CFR: Code of Federal Regulations Title 37
- Subsequent Publications: Federal Register updates (post-Jan 2024)
Core Operations
1. search_mpep
Inputs:
query(string, required): Search query (minimum 3 characters)top_k(int, optional): Number of results (default: 5, max: 20)retrieve_k(int | None, optional): Candidates before reranking (default: top_k * 4, max: 100)source_filter(string | None, optional): Filter by source ("MPEP","35_USC","37_CFR","SUBSEQUENT", orNone)is_statute(bool | None, optional): Filter for statute contentis_regulation(bool | None, optional): Filter for regulation contentis_update(bool | None, optional): Filter for recent updates
Outputs:
{
"rank": int,
"source": str,
"section": str,
"file": str,
"page": int,
"has_statute": bool,
"has_mpep_ref": bool,
"has_rule_ref": bool,
"is_statute": bool,
"is_regulation": bool,
"is_update": bool,
"relevance_score": float,
"text": str,
# Optional for SUBSEQUENT:
"doc_type": str,
"fr_citation": str,
"effective_date": str
}
Examples:
# Basic search
search_mpep("enablement requirement 35 USC 112", top_k=5)
# Search only statutes
search_mpep("written description", top_k=10, is_statute=True)
# Search recent updates
search_mpep("AI inventorship", is_update=True)
# Filter by source
search_mpep("fee schedule", source_filter="37_CFR")
2. get_mpep_section
Retrieve all content from specific MPEP section.
Inputs:
section_number(string, required): MPEP section number (e.g.,"2100","608.01")max_chunks(int, optional): Maximum chunks to return (default: 50)
Outputs:
{
"section": str,
"total_chunks": int,
"chunks": [
{
"text": str,
"metadata": {
"source": str,
"file": str,
"page": int,
"section": str,
"has_statute": bool,
"has_mpep_ref": bool,
"has_rule_ref": bool,
"is_statute": bool,
"is_regulation": bool,
"is_update": bool
}
}
]
}
Error Response:
{"error": "No content found for MPEP section {section_number}"}
Examples:
# Get MPEP 2100 (Patentability)
get_mpep_section("2100", max_chunks=50)
# Get subsection
get_mpep_section("608.01")
Input Validation
Query validation:
- Minimum 3 characters
- Case-insensitive
- No empty/whitespace-only queries
Section number validation:
- Numeric with optional decimal (e.g., "100", "2100", "608.01")
Limits:
top_kcapped at 20retrieve_kcapped at 100
Implementation Notes
Index Location:
- FAISS index:
mcp_server/index/mpep_index.faiss - Metadata:
mcp_server/index/mpep_metadata.json - BM25 index:
mcp_server/index/mpep_bm25.json
Search Architecture:
- HyDE Query Expansion (hypothetical documents)
- Hybrid Retrieval (FAISS vector + BM25 keyword via RRF)
- Cross-Encoder Reranking (final relevance scores)
- Metadata Filtering (source/type filters)
Dependencies:
- sentence-transformers (BGE-base-en-v1.5)
- FAISS (vector search)
- rank-bm25 (keyword search)
- Cross-encoder (reranking)
- HyDE (optional, graceful degradation)
Error Handling:
- Clear error messages for missing index/invalid queries
- Graceful degradation if HyDE fails
- Input validation before processing
GitHub 仓库
相关推荐技能
algorithmic-art
元该Skill使用p5.js创建包含种子随机性和交互参数探索的算法艺术,适用于生成艺术、流场或粒子系统等需求。它能自动生成算法哲学文档(.md)和对应的交互式艺术代码(.html/.js),确保作品原创性避免侵权。开发者可通过定义计算美学理念快速获得可交互的艺术实现方案。
subagent-driven-development
开发该Skill用于在当前会话中执行包含独立任务的实施计划,它会为每个任务分派一个全新的子代理并在任务间进行代码审查。这种"全新子代理+任务间审查"的模式既能保障代码质量,又能实现快速迭代。适合需要在当前会话中连续执行独立任务,并希望在每个任务后都有质量把关的开发场景。
executing-plans
设计该Skill用于当开发者提供完整实施计划时,以受控批次方式执行代码实现。它会先审阅计划并提出疑问,然后分批次执行任务(默认每批3个任务),并在批次间暂停等待审查。关键特性包括分批次执行、内置检查点和架构师审查机制,确保复杂系统实现的可控性。
cost-optimization
其他这个Claude Skill帮助开发者优化云成本,通过资源调整、标记策略和预留实例来降低AWS、Azure和GCP的开支。它适用于减少云支出、分析基础设施成本或实施成本治理策略的场景。关键功能包括提供成本可视化、资源规模调整指导和定价模型优化建议。
