MCP HubMCP Hub
返回技能列表

generating-unit-tests

jeremylongshore
更新于 Today
71 次查看
409
51
409
在 GitHub 上查看
aitestingautomationdesign

关于

This skill automatically generates comprehensive unit tests from source code when developers request test creation. It supports multiple testing frameworks like Jest, pytest, and JUnit, intelligently detecting the appropriate one or using a specified framework. Use it when asking to "generate tests," "create unit tests," or using the "gut" shortcut with file paths.

技能文档

Overview

This skill empowers Claude to rapidly create robust unit tests, saving developers time and ensuring code quality. It analyzes source code, identifies key functionalities, and generates test cases covering various scenarios, including happy paths, edge cases, and error conditions.

How It Works

  1. Analyze Source Code: The skill analyzes the provided source code file to understand its functionality, inputs, and outputs.
  2. Determine Testing Framework: The skill either detects the appropriate testing framework based on the file type and project structure or uses the framework specified by the user.
  3. Generate Test Cases: The skill generates comprehensive test cases, including tests for valid inputs, invalid inputs, boundary conditions, and error scenarios.
  4. Create Mock Dependencies: The skill automatically creates mocks and stubs for external dependencies to isolate the code being tested.
  5. Output Test File: The skill outputs a new test file containing the generated test cases, imports, setup, and assertions.

When to Use This Skill

This skill activates when you need to:

  • Create unit tests for a specific file or code snippet.
  • Generate test cases for a function, class, or module.
  • Quickly add test coverage to existing code.
  • Ensure code quality and prevent regressions.

Examples

Example 1: Generating Tests for a JavaScript Utility Function

User request: "generate tests src/utils/validator.js"

The skill will:

  1. Analyze the validator.js file to understand its functions and dependencies.
  2. Detect that the file is JavaScript and default to Jest.
  3. Generate a validator.test.js file with test cases covering various validation scenarios.

Example 2: Generating Tests for a Python API Endpoint using pytest

User request: "generate tests --framework pytest src/api/users.py"

The skill will:

  1. Analyze the users.py file to understand its API endpoints and dependencies.
  2. Use pytest as the testing framework, as specified by the user.
  3. Generate a test_users.py file with test cases covering various API scenarios, including successful requests, error handling, and authentication.

Best Practices

  • Framework Specification: Explicitly specify the testing framework when the default is not desired or ambiguous.
  • File Granularity: Generate tests for individual files or modules to maintain focus and testability.
  • Review and Refine: Always review and refine the generated tests to ensure they accurately reflect the desired behavior and coverage.

Integration

This skill can be used in conjunction with other code analysis and refactoring tools to improve code quality and maintainability. It also integrates with CI/CD pipelines to automatically run tests and prevent regressions.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/unit-test-generator

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-migration-20251108-070147/plugins/testing/unit-test-generator/skills/unit-test-generator
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能