ReasoningBank Intelligence
关于
This skill enables AI agents to implement adaptive learning by recording experiences, recognizing patterns, and optimizing strategies over time. Use it when building self-learning agents or meta-cognitive systems that require continuous improvement. It provides persistent learning capabilities through integrations like AgentDB.
快速安装
Claude Code
推荐/plugin add https://github.com/proffesor-for-testing/agentic-qegit clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/ReasoningBank Intelligence在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
ReasoningBank Intelligence
What This Skill Does
Implements ReasoningBank's adaptive learning system for AI agents to learn from experience, recognize patterns, and optimize strategies over time. Enables meta-cognitive capabilities and continuous improvement.
Prerequisites
- agentic-flow v1.5.11+
- AgentDB v1.0.4+ (for persistence)
- Node.js 18+
Quick Start
import { ReasoningBank } from 'agentic-flow/reasoningbank';
// Initialize ReasoningBank
const rb = new ReasoningBank({
persist: true,
learningRate: 0.1,
adapter: 'agentdb' // Use AgentDB for storage
});
// Record task outcome
await rb.recordExperience({
task: 'code_review',
approach: 'static_analysis_first',
outcome: {
success: true,
metrics: {
bugs_found: 5,
time_taken: 120,
false_positives: 1
}
},
context: {
language: 'typescript',
complexity: 'medium'
}
});
// Get optimal strategy
const strategy = await rb.recommendStrategy('code_review', {
language: 'typescript',
complexity: 'high'
});
Core Features
1. Pattern Recognition
// Learn patterns from data
await rb.learnPattern({
pattern: 'api_errors_increase_after_deploy',
triggers: ['deployment', 'traffic_spike'],
actions: ['rollback', 'scale_up'],
confidence: 0.85
});
// Match patterns
const matches = await rb.matchPatterns(currentSituation);
2. Strategy Optimization
// Compare strategies
const comparison = await rb.compareStrategies('bug_fixing', [
'tdd_approach',
'debug_first',
'reproduce_then_fix'
]);
// Get best strategy
const best = comparison.strategies[0];
console.log(`Best: ${best.name} (score: ${best.score})`);
3. Continuous Learning
// Enable auto-learning from all tasks
await rb.enableAutoLearning({
threshold: 0.7, // Only learn from high-confidence outcomes
updateFrequency: 100 // Update models every 100 experiences
});
Advanced Usage
Meta-Learning
// Learn about learning
await rb.metaLearn({
observation: 'parallel_execution_faster_for_independent_tasks',
confidence: 0.95,
applicability: {
task_types: ['batch_processing', 'data_transformation'],
conditions: ['tasks_independent', 'io_bound']
}
});
Transfer Learning
// Apply knowledge from one domain to another
await rb.transferKnowledge({
from: 'code_review_javascript',
to: 'code_review_typescript',
similarity: 0.8
});
Adaptive Agents
// Create self-improving agent
class AdaptiveAgent {
async execute(task: Task) {
// Get optimal strategy
const strategy = await rb.recommendStrategy(task.type, task.context);
// Execute with strategy
const result = await this.executeWithStrategy(task, strategy);
// Learn from outcome
await rb.recordExperience({
task: task.type,
approach: strategy.name,
outcome: result,
context: task.context
});
return result;
}
}
Integration with AgentDB
// Persist ReasoningBank data
await rb.configure({
storage: {
type: 'agentdb',
options: {
database: './reasoning-bank.db',
enableVectorSearch: true
}
}
});
// Query learned patterns
const patterns = await rb.query({
category: 'optimization',
minConfidence: 0.8,
timeRange: { last: '30d' }
});
Performance Metrics
// Track learning effectiveness
const metrics = await rb.getMetrics();
console.log(`
Total Experiences: ${metrics.totalExperiences}
Patterns Learned: ${metrics.patternsLearned}
Strategy Success Rate: ${metrics.strategySuccessRate}
Improvement Over Time: ${metrics.improvement}
`);
Best Practices
- Record consistently: Log all task outcomes, not just successes
- Provide context: Rich context improves pattern matching
- Set thresholds: Filter low-confidence learnings
- Review periodically: Audit learned patterns for quality
- Use vector search: Enable semantic pattern matching
Troubleshooting
Issue: Poor recommendations
Solution: Ensure sufficient training data (100+ experiences per task type)
Issue: Slow pattern matching
Solution: Enable vector indexing in AgentDB
Issue: Memory growing large
Solution: Set TTL for old experiences or enable pruning
Learn More
- ReasoningBank Guide: agentic-flow/src/reasoningbank/README.md
- AgentDB Integration: packages/agentdb/docs/reasoningbank.md
- Pattern Learning: docs/reasoning/patterns.md
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
