MCP HubMCP Hub
返回技能列表

flow-nexus-neural

natea
更新于 Yesterday
149 次查看
1
2
1
在 GitHub 上查看
其他neural-networksdistributed-trainingmachine-learningdeep-learningflow-nexuse2b-sandboxes

关于

Flow Nexus Neural enables developers to train and deploy neural networks using distributed E2B sandboxes. It supports custom architectures like feedforward, LSTM, GAN, and transformer networks, plus pre-built templates. Use this skill when you need to manage scalable, distributed machine learning training workflows directly from your Claude environment.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/natea/fitfinder
Git 克隆备选方式
git clone https://github.com/natea/fitfinder.git ~/.claude/skills/flow-nexus-neural

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Flow Nexus Neural Networks

Deploy, train, and manage neural networks in distributed E2B sandbox environments. Train custom models with multiple architectures (feedforward, LSTM, GAN, transformer) or use pre-built templates from the marketplace.

Prerequisites

# Add Flow Nexus MCP server
claude mcp add flow-nexus npx flow-nexus@latest mcp start

# Register and login
npx flow-nexus@latest register
npx flow-nexus@latest login

Core Capabilities

1. Single-Node Neural Training

Train neural networks with custom architectures and configurations.

Available Architectures:

  • feedforward - Standard fully-connected networks
  • lstm - Long Short-Term Memory for sequences
  • gan - Generative Adversarial Networks
  • autoencoder - Dimensionality reduction
  • transformer - Attention-based models

Training Tiers:

  • nano - Minimal resources (fast, limited)
  • mini - Small models
  • small - Standard models
  • medium - Complex models
  • large - Large-scale training

Example: Train Custom Classifier

mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "feedforward",
      layers: [
        { type: "dense", units: 256, activation: "relu" },
        { type: "dropout", rate: 0.3 },
        { type: "dense", units: 128, activation: "relu" },
        { type: "dropout", rate: 0.2 },
        { type: "dense", units: 64, activation: "relu" },
        { type: "dense", units: 10, activation: "softmax" }
      ]
    },
    training: {
      epochs: 100,
      batch_size: 32,
      learning_rate: 0.001,
      optimizer: "adam"
    },
    divergent: {
      enabled: true,
      pattern: "lateral", // quantum, chaotic, associative, evolutionary
      factor: 0.5
    }
  },
  tier: "small",
  user_id: "your_user_id"
})

Example: LSTM for Time Series

mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "lstm",
      layers: [
        { type: "lstm", units: 128, return_sequences: true },
        { type: "dropout", rate: 0.2 },
        { type: "lstm", units: 64 },
        { type: "dense", units: 1, activation: "linear" }
      ]
    },
    training: {
      epochs: 150,
      batch_size: 64,
      learning_rate: 0.01,
      optimizer: "adam"
    }
  },
  tier: "medium"
})

Example: Transformer Architecture

mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "transformer",
      layers: [
        { type: "embedding", vocab_size: 10000, embedding_dim: 512 },
        { type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
        { type: "global_average_pooling" },
        { type: "dense", units: 128, activation: "relu" },
        { type: "dense", units: 2, activation: "softmax" }
      ]
    },
    training: {
      epochs: 50,
      batch_size: 16,
      learning_rate: 0.0001,
      optimizer: "adam"
    }
  },
  tier: "large"
})

2. Model Inference

Run predictions on trained models.

mcp__flow-nexus__neural_predict({
  model_id: "model_abc123",
  input: [
    [0.5, 0.3, 0.2, 0.1],
    [0.8, 0.1, 0.05, 0.05],
    [0.2, 0.6, 0.15, 0.05]
  ],
  user_id: "your_user_id"
})

Response:

{
  "predictions": [
    [0.12, 0.85, 0.03],
    [0.89, 0.08, 0.03],
    [0.05, 0.92, 0.03]
  ],
  "inference_time_ms": 45,
  "model_version": "1.0.0"
}

3. Template Marketplace

Browse and deploy pre-trained models from the marketplace.

List Available Templates

mcp__flow-nexus__neural_list_templates({
  category: "classification", // timeseries, regression, nlp, vision, anomaly, generative
  tier: "free", // or "paid"
  search: "sentiment",
  limit: 20
})

Response:

{
  "templates": [
    {
      "id": "sentiment-analysis-v2",
      "name": "Sentiment Analysis Classifier",
      "description": "Pre-trained BERT model for sentiment analysis",
      "category": "nlp",
      "accuracy": 0.94,
      "downloads": 1523,
      "tier": "free"
    },
    {
      "id": "image-classifier-resnet",
      "name": "ResNet Image Classifier",
      "description": "ResNet-50 for image classification",
      "category": "vision",
      "accuracy": 0.96,
      "downloads": 2341,
      "tier": "paid"
    }
  ]
}

Deploy Template

mcp__flow-nexus__neural_deploy_template({
  template_id: "sentiment-analysis-v2",
  custom_config: {
    training: {
      epochs: 50,
      learning_rate: 0.0001
    }
  },
  user_id: "your_user_id"
})

4. Distributed Training Clusters

Train large models across multiple E2B sandboxes with distributed computing.

Initialize Cluster

mcp__flow-nexus__neural_cluster_init({
  name: "large-model-cluster",
  architecture: "transformer", // transformer, cnn, rnn, gnn, hybrid
  topology: "mesh", // mesh, ring, star, hierarchical
  consensus: "proof-of-learning", // byzantine, raft, gossip
  daaEnabled: true, // Decentralized Autonomous Agents
  wasmOptimization: true
})

Response:

{
  "cluster_id": "cluster_xyz789",
  "name": "large-model-cluster",
  "status": "initializing",
  "topology": "mesh",
  "max_nodes": 100,
  "created_at": "2025-10-19T10:30:00Z"
}

Deploy Worker Nodes

// Deploy parameter server
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "parameter_server",
  model: "large",
  template: "nodejs",
  capabilities: ["parameter_management", "gradient_aggregation"],
  autonomy: 0.8
})

// Deploy worker nodes
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "worker",
  model: "xl",
  role: "worker",
  capabilities: ["training", "inference"],
  layers: [
    { type: "transformer_encoder", num_heads: 16 },
    { type: "feed_forward", units: 4096 }
  ],
  autonomy: 0.9
})

// Deploy aggregator
mcp__flow-nexus__neural_node_deploy({
  cluster_id: "cluster_xyz789",
  node_type: "aggregator",
  model: "large",
  capabilities: ["gradient_aggregation", "model_synchronization"]
})

Connect Cluster Topology

mcp__flow-nexus__neural_cluster_connect({
  cluster_id: "cluster_xyz789",
  topology: "mesh" // Override default if needed
})

Start Distributed Training

mcp__flow-nexus__neural_train_distributed({
  cluster_id: "cluster_xyz789",
  dataset: "imagenet", // or custom dataset identifier
  epochs: 100,
  batch_size: 128,
  learning_rate: 0.001,
  optimizer: "adam", // sgd, rmsprop, adagrad
  federated: true // Enable federated learning
})

Federated Learning Example:

mcp__flow-nexus__neural_train_distributed({
  cluster_id: "cluster_xyz789",
  dataset: "medical_images_distributed",
  epochs: 200,
  batch_size: 64,
  learning_rate: 0.0001,
  optimizer: "adam",
  federated: true, // Data stays on local nodes
  aggregation_rounds: 50,
  min_nodes_per_round: 5
})

Monitor Cluster Status

mcp__flow-nexus__neural_cluster_status({
  cluster_id: "cluster_xyz789"
})

Response:

{
  "cluster_id": "cluster_xyz789",
  "status": "training",
  "nodes": [
    {
      "node_id": "node_001",
      "type": "parameter_server",
      "status": "active",
      "cpu_usage": 0.75,
      "memory_usage": 0.82
    },
    {
      "node_id": "node_002",
      "type": "worker",
      "status": "active",
      "training_progress": 0.45
    }
  ],
  "training_metrics": {
    "current_epoch": 45,
    "total_epochs": 100,
    "loss": 0.234,
    "accuracy": 0.891
  }
}

Run Distributed Inference

mcp__flow-nexus__neural_predict_distributed({
  cluster_id: "cluster_xyz789",
  input_data: JSON.stringify([
    [0.1, 0.2, 0.3],
    [0.4, 0.5, 0.6]
  ]),
  aggregation: "ensemble" // mean, majority, weighted, ensemble
})

Terminate Cluster

mcp__flow-nexus__neural_cluster_terminate({
  cluster_id: "cluster_xyz789"
})

5. Model Management

List Your Models

mcp__flow-nexus__neural_list_models({
  user_id: "your_user_id",
  include_public: true
})

Response:

{
  "models": [
    {
      "model_id": "model_abc123",
      "name": "Custom Classifier v1",
      "architecture": "feedforward",
      "accuracy": 0.92,
      "created_at": "2025-10-15T14:20:00Z",
      "status": "trained"
    },
    {
      "model_id": "model_def456",
      "name": "LSTM Forecaster",
      "architecture": "lstm",
      "mse": 0.0045,
      "created_at": "2025-10-18T09:15:00Z",
      "status": "training"
    }
  ]
}

Check Training Status

mcp__flow-nexus__neural_training_status({
  job_id: "job_training_xyz"
})

Response:

{
  "job_id": "job_training_xyz",
  "status": "training",
  "progress": 0.67,
  "current_epoch": 67,
  "total_epochs": 100,
  "current_loss": 0.234,
  "estimated_completion": "2025-10-19T12:45:00Z"
}

Performance Benchmarking

mcp__flow-nexus__neural_performance_benchmark({
  model_id: "model_abc123",
  benchmark_type: "comprehensive" // inference, throughput, memory, comprehensive
})

Response:

{
  "model_id": "model_abc123",
  "benchmarks": {
    "inference_latency_ms": 12.5,
    "throughput_qps": 8000,
    "memory_usage_mb": 245,
    "gpu_utilization": 0.78,
    "accuracy": 0.92,
    "f1_score": 0.89
  },
  "timestamp": "2025-10-19T11:00:00Z"
}

Create Validation Workflow

mcp__flow-nexus__neural_validation_workflow({
  model_id: "model_abc123",
  user_id: "your_user_id",
  validation_type: "comprehensive" // performance, accuracy, robustness, comprehensive
})

6. Publishing and Marketplace

Publish Model as Template

mcp__flow-nexus__neural_publish_template({
  model_id: "model_abc123",
  name: "High-Accuracy Sentiment Classifier",
  description: "Fine-tuned BERT model for sentiment analysis with 94% accuracy",
  category: "nlp",
  price: 0, // 0 for free, or credits amount
  user_id: "your_user_id"
})

Rate a Template

mcp__flow-nexus__neural_rate_template({
  template_id: "sentiment-analysis-v2",
  rating: 5,
  review: "Excellent model! Achieved 95% accuracy on my dataset.",
  user_id: "your_user_id"
})

Common Use Cases

Image Classification with CNN

// Initialize cluster for large-scale image training
const cluster = await mcp__flow-nexus__neural_cluster_init({
  name: "image-classification-cluster",
  architecture: "cnn",
  topology: "hierarchical",
  wasmOptimization: true
})

// Deploy worker nodes
await mcp__flow-nexus__neural_node_deploy({
  cluster_id: cluster.cluster_id,
  node_type: "worker",
  model: "large",
  capabilities: ["training", "data_augmentation"]
})

// Start training
await mcp__flow-nexus__neural_train_distributed({
  cluster_id: cluster.cluster_id,
  dataset: "custom_images",
  epochs: 100,
  batch_size: 64,
  learning_rate: 0.001,
  optimizer: "adam"
})

NLP Sentiment Analysis

// Use pre-built template
const deployment = await mcp__flow-nexus__neural_deploy_template({
  template_id: "sentiment-analysis-v2",
  custom_config: {
    training: {
      epochs: 30,
      batch_size: 16
    }
  }
})

// Run inference
const result = await mcp__flow-nexus__neural_predict({
  model_id: deployment.model_id,
  input: ["This product is amazing!", "Terrible experience."]
})

Time Series Forecasting

// Train LSTM model
const training = await mcp__flow-nexus__neural_train({
  config: {
    architecture: {
      type: "lstm",
      layers: [
        { type: "lstm", units: 128, return_sequences: true },
        { type: "dropout", rate: 0.2 },
        { type: "lstm", units: 64 },
        { type: "dense", units: 1 }
      ]
    },
    training: {
      epochs: 150,
      batch_size: 64,
      learning_rate: 0.01,
      optimizer: "adam"
    }
  },
  tier: "medium"
})

// Monitor progress
const status = await mcp__flow-nexus__neural_training_status({
  job_id: training.job_id
})

Federated Learning for Privacy

// Initialize federated cluster
const cluster = await mcp__flow-nexus__neural_cluster_init({
  name: "federated-medical-cluster",
  architecture: "transformer",
  topology: "mesh",
  consensus: "proof-of-learning",
  daaEnabled: true
})

// Deploy nodes across different locations
for (let i = 0; i < 5; i++) {
  await mcp__flow-nexus__neural_node_deploy({
    cluster_id: cluster.cluster_id,
    node_type: "worker",
    model: "large",
    autonomy: 0.9
  })
}

// Train with federated learning (data never leaves nodes)
await mcp__flow-nexus__neural_train_distributed({
  cluster_id: cluster.cluster_id,
  dataset: "medical_records_distributed",
  epochs: 200,
  federated: true,
  aggregation_rounds: 100
})

Architecture Patterns

Feedforward Networks

Best for: Classification, regression, simple pattern recognition

{
  type: "feedforward",
  layers: [
    { type: "dense", units: 256, activation: "relu" },
    { type: "dropout", rate: 0.3 },
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: 10, activation: "softmax" }
  ]
}

LSTM Networks

Best for: Time series, sequences, forecasting

{
  type: "lstm",
  layers: [
    { type: "lstm", units: 128, return_sequences: true },
    { type: "lstm", units: 64 },
    { type: "dense", units: 1 }
  ]
}

Transformers

Best for: NLP, attention mechanisms, large-scale text

{
  type: "transformer",
  layers: [
    { type: "embedding", vocab_size: 10000, embedding_dim: 512 },
    { type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
    { type: "global_average_pooling" },
    { type: "dense", units: 2, activation: "softmax" }
  ]
}

GANs

Best for: Generative tasks, image synthesis

{
  type: "gan",
  generator_layers: [...],
  discriminator_layers: [...]
}

Autoencoders

Best for: Dimensionality reduction, anomaly detection

{
  type: "autoencoder",
  encoder_layers: [
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: 64, activation: "relu" }
  ],
  decoder_layers: [
    { type: "dense", units: 128, activation: "relu" },
    { type: "dense", units: input_dim, activation: "sigmoid" }
  ]
}

Best Practices

  1. Start Small: Begin with nano or mini tiers for experimentation
  2. Use Templates: Leverage marketplace templates for common tasks
  3. Monitor Training: Check status regularly to catch issues early
  4. Benchmark Models: Always benchmark before production deployment
  5. Distributed Training: Use clusters for large models (>1B parameters)
  6. Federated Learning: Use for privacy-sensitive data
  7. Version Models: Publish successful models as templates for reuse
  8. Validate Thoroughly: Use validation workflows before deployment

Troubleshooting

Training Stalled

// Check cluster status
const status = await mcp__flow-nexus__neural_cluster_status({
  cluster_id: "cluster_id"
})

// Terminate and restart if needed
await mcp__flow-nexus__neural_cluster_terminate({
  cluster_id: "cluster_id"
})

Low Accuracy

  • Increase epochs
  • Adjust learning rate
  • Add regularization (dropout)
  • Try different optimizer
  • Use data augmentation

Out of Memory

  • Reduce batch size
  • Use smaller model tier
  • Enable gradient accumulation
  • Use distributed training

Related Skills

  • flow-nexus-sandbox - E2B sandbox management
  • flow-nexus-swarm - AI swarm orchestration
  • flow-nexus-workflow - Workflow automation

Resources


Note: Distributed training requires authentication. Register at https://flow-nexus.ruv.io or use npx flow-nexus@latest register.

GitHub 仓库

natea/fitfinder
路径: .claude/skills/flow-nexus-neural

相关推荐技能

pytorch-fsdp

设计

这个Claude Skill为开发者提供PyTorch FSDP的专家级指导,涵盖参数分片、混合精度和CPU卸载等关键特性。它适用于实现和调试分布式训练解决方案,特别是处理大规模模型时的性能优化。开发者可以快速获取FSDP最佳实践、API使用方法和常见问题排查帮助。

查看技能

deepspeed

设计

该Skill为开发者提供DeepSpeed分布式训练的专家指导,涵盖ZeRO优化阶段、流水线并行和混合精度训练等核心功能。它适用于实现DeepSpeed解决方案、调试代码或学习最佳实践的场景。通过该Skill,开发者能快速获得API使用、特性配置和性能优化的专业支持。

查看技能

when-optimizing-agent-learning-use-reasoningbank-intelligence

其他

该Skill通过ReasoningBank实现自适应学习,帮助开发者在优化智能体时进行模式识别和策略调优。它适用于需要提升重复任务效率或改进决策策略的场景,可输出训练模型和优化建议。关键能力包括持续性能改进和模式库构建,依赖claude-flow与reasoningbank组件。

查看技能

flow-nexus-neural

其他

Flow Nexus Neural 让开发者能在分布式 E2B 沙盒环境中训练和部署神经网络,支持多种架构如全连接网络、LSTM、GAN 和 Transformer。它适用于需要可扩展机器学习工作流的场景,提供从单节点训练到分布式部署的全流程管理。开发者只需通过 MCP 服务器集成,即可快速启动模型训练或使用预构建模板。

查看技能