flow-nexus-neural
关于
Flow Nexus Neural enables developers to train and deploy neural networks in distributed E2B sandboxes. It supports multiple architectures like feedforward, LSTM, GAN, and transformer models, either custom-built or from templates. Use this skill when you need scalable, sandboxed machine learning training and deployment workflows.
快速安装
Claude Code
推荐/plugin add https://github.com/proffesor-for-testing/agentic-qegit clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/flow-nexus-neural在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Flow Nexus Neural Networks
Deploy, train, and manage neural networks in distributed E2B sandbox environments. Train custom models with multiple architectures (feedforward, LSTM, GAN, transformer) or use pre-built templates from the marketplace.
Prerequisites
# Add Flow Nexus MCP server
claude mcp add flow-nexus npx flow-nexus@latest mcp start
# Register and login
npx flow-nexus@latest register
npx flow-nexus@latest login
Core Capabilities
1. Single-Node Neural Training
Train neural networks with custom architectures and configurations.
Available Architectures:
feedforward- Standard fully-connected networkslstm- Long Short-Term Memory for sequencesgan- Generative Adversarial Networksautoencoder- Dimensionality reductiontransformer- Attention-based models
Training Tiers:
nano- Minimal resources (fast, limited)mini- Small modelssmall- Standard modelsmedium- Complex modelslarge- Large-scale training
Example: Train Custom Classifier
mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "feedforward",
layers: [
{ type: "dense", units: 256, activation: "relu" },
{ type: "dropout", rate: 0.3 },
{ type: "dense", units: 128, activation: "relu" },
{ type: "dropout", rate: 0.2 },
{ type: "dense", units: 64, activation: "relu" },
{ type: "dense", units: 10, activation: "softmax" }
]
},
training: {
epochs: 100,
batch_size: 32,
learning_rate: 0.001,
optimizer: "adam"
},
divergent: {
enabled: true,
pattern: "lateral", // quantum, chaotic, associative, evolutionary
factor: 0.5
}
},
tier: "small",
user_id: "your_user_id"
})
Example: LSTM for Time Series
mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "lstm",
layers: [
{ type: "lstm", units: 128, return_sequences: true },
{ type: "dropout", rate: 0.2 },
{ type: "lstm", units: 64 },
{ type: "dense", units: 1, activation: "linear" }
]
},
training: {
epochs: 150,
batch_size: 64,
learning_rate: 0.01,
optimizer: "adam"
}
},
tier: "medium"
})
Example: Transformer Architecture
mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "transformer",
layers: [
{ type: "embedding", vocab_size: 10000, embedding_dim: 512 },
{ type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
{ type: "global_average_pooling" },
{ type: "dense", units: 128, activation: "relu" },
{ type: "dense", units: 2, activation: "softmax" }
]
},
training: {
epochs: 50,
batch_size: 16,
learning_rate: 0.0001,
optimizer: "adam"
}
},
tier: "large"
})
2. Model Inference
Run predictions on trained models.
mcp__flow-nexus__neural_predict({
model_id: "model_abc123",
input: [
[0.5, 0.3, 0.2, 0.1],
[0.8, 0.1, 0.05, 0.05],
[0.2, 0.6, 0.15, 0.05]
],
user_id: "your_user_id"
})
Response:
{
"predictions": [
[0.12, 0.85, 0.03],
[0.89, 0.08, 0.03],
[0.05, 0.92, 0.03]
],
"inference_time_ms": 45,
"model_version": "1.0.0"
}
3. Template Marketplace
Browse and deploy pre-trained models from the marketplace.
List Available Templates
mcp__flow-nexus__neural_list_templates({
category: "classification", // timeseries, regression, nlp, vision, anomaly, generative
tier: "free", // or "paid"
search: "sentiment",
limit: 20
})
Response:
{
"templates": [
{
"id": "sentiment-analysis-v2",
"name": "Sentiment Analysis Classifier",
"description": "Pre-trained BERT model for sentiment analysis",
"category": "nlp",
"accuracy": 0.94,
"downloads": 1523,
"tier": "free"
},
{
"id": "image-classifier-resnet",
"name": "ResNet Image Classifier",
"description": "ResNet-50 for image classification",
"category": "vision",
"accuracy": 0.96,
"downloads": 2341,
"tier": "paid"
}
]
}
Deploy Template
mcp__flow-nexus__neural_deploy_template({
template_id: "sentiment-analysis-v2",
custom_config: {
training: {
epochs: 50,
learning_rate: 0.0001
}
},
user_id: "your_user_id"
})
4. Distributed Training Clusters
Train large models across multiple E2B sandboxes with distributed computing.
Initialize Cluster
mcp__flow-nexus__neural_cluster_init({
name: "large-model-cluster",
architecture: "transformer", // transformer, cnn, rnn, gnn, hybrid
topology: "mesh", // mesh, ring, star, hierarchical
consensus: "proof-of-learning", // byzantine, raft, gossip
daaEnabled: true, // Decentralized Autonomous Agents
wasmOptimization: true
})
Response:
{
"cluster_id": "cluster_xyz789",
"name": "large-model-cluster",
"status": "initializing",
"topology": "mesh",
"max_nodes": 100,
"created_at": "2025-10-19T10:30:00Z"
}
Deploy Worker Nodes
// Deploy parameter server
mcp__flow-nexus__neural_node_deploy({
cluster_id: "cluster_xyz789",
node_type: "parameter_server",
model: "large",
template: "nodejs",
capabilities: ["parameter_management", "gradient_aggregation"],
autonomy: 0.8
})
// Deploy worker nodes
mcp__flow-nexus__neural_node_deploy({
cluster_id: "cluster_xyz789",
node_type: "worker",
model: "xl",
role: "worker",
capabilities: ["training", "inference"],
layers: [
{ type: "transformer_encoder", num_heads: 16 },
{ type: "feed_forward", units: 4096 }
],
autonomy: 0.9
})
// Deploy aggregator
mcp__flow-nexus__neural_node_deploy({
cluster_id: "cluster_xyz789",
node_type: "aggregator",
model: "large",
capabilities: ["gradient_aggregation", "model_synchronization"]
})
Connect Cluster Topology
mcp__flow-nexus__neural_cluster_connect({
cluster_id: "cluster_xyz789",
topology: "mesh" // Override default if needed
})
Start Distributed Training
mcp__flow-nexus__neural_train_distributed({
cluster_id: "cluster_xyz789",
dataset: "imagenet", // or custom dataset identifier
epochs: 100,
batch_size: 128,
learning_rate: 0.001,
optimizer: "adam", // sgd, rmsprop, adagrad
federated: true // Enable federated learning
})
Federated Learning Example:
mcp__flow-nexus__neural_train_distributed({
cluster_id: "cluster_xyz789",
dataset: "medical_images_distributed",
epochs: 200,
batch_size: 64,
learning_rate: 0.0001,
optimizer: "adam",
federated: true, // Data stays on local nodes
aggregation_rounds: 50,
min_nodes_per_round: 5
})
Monitor Cluster Status
mcp__flow-nexus__neural_cluster_status({
cluster_id: "cluster_xyz789"
})
Response:
{
"cluster_id": "cluster_xyz789",
"status": "training",
"nodes": [
{
"node_id": "node_001",
"type": "parameter_server",
"status": "active",
"cpu_usage": 0.75,
"memory_usage": 0.82
},
{
"node_id": "node_002",
"type": "worker",
"status": "active",
"training_progress": 0.45
}
],
"training_metrics": {
"current_epoch": 45,
"total_epochs": 100,
"loss": 0.234,
"accuracy": 0.891
}
}
Run Distributed Inference
mcp__flow-nexus__neural_predict_distributed({
cluster_id: "cluster_xyz789",
input_data: JSON.stringify([
[0.1, 0.2, 0.3],
[0.4, 0.5, 0.6]
]),
aggregation: "ensemble" // mean, majority, weighted, ensemble
})
Terminate Cluster
mcp__flow-nexus__neural_cluster_terminate({
cluster_id: "cluster_xyz789"
})
5. Model Management
List Your Models
mcp__flow-nexus__neural_list_models({
user_id: "your_user_id",
include_public: true
})
Response:
{
"models": [
{
"model_id": "model_abc123",
"name": "Custom Classifier v1",
"architecture": "feedforward",
"accuracy": 0.92,
"created_at": "2025-10-15T14:20:00Z",
"status": "trained"
},
{
"model_id": "model_def456",
"name": "LSTM Forecaster",
"architecture": "lstm",
"mse": 0.0045,
"created_at": "2025-10-18T09:15:00Z",
"status": "training"
}
]
}
Check Training Status
mcp__flow-nexus__neural_training_status({
job_id: "job_training_xyz"
})
Response:
{
"job_id": "job_training_xyz",
"status": "training",
"progress": 0.67,
"current_epoch": 67,
"total_epochs": 100,
"current_loss": 0.234,
"estimated_completion": "2025-10-19T12:45:00Z"
}
Performance Benchmarking
mcp__flow-nexus__neural_performance_benchmark({
model_id: "model_abc123",
benchmark_type: "comprehensive" // inference, throughput, memory, comprehensive
})
Response:
{
"model_id": "model_abc123",
"benchmarks": {
"inference_latency_ms": 12.5,
"throughput_qps": 8000,
"memory_usage_mb": 245,
"gpu_utilization": 0.78,
"accuracy": 0.92,
"f1_score": 0.89
},
"timestamp": "2025-10-19T11:00:00Z"
}
Create Validation Workflow
mcp__flow-nexus__neural_validation_workflow({
model_id: "model_abc123",
user_id: "your_user_id",
validation_type: "comprehensive" // performance, accuracy, robustness, comprehensive
})
6. Publishing and Marketplace
Publish Model as Template
mcp__flow-nexus__neural_publish_template({
model_id: "model_abc123",
name: "High-Accuracy Sentiment Classifier",
description: "Fine-tuned BERT model for sentiment analysis with 94% accuracy",
category: "nlp",
price: 0, // 0 for free, or credits amount
user_id: "your_user_id"
})
Rate a Template
mcp__flow-nexus__neural_rate_template({
template_id: "sentiment-analysis-v2",
rating: 5,
review: "Excellent model! Achieved 95% accuracy on my dataset.",
user_id: "your_user_id"
})
Common Use Cases
Image Classification with CNN
// Initialize cluster for large-scale image training
const cluster = await mcp__flow-nexus__neural_cluster_init({
name: "image-classification-cluster",
architecture: "cnn",
topology: "hierarchical",
wasmOptimization: true
})
// Deploy worker nodes
await mcp__flow-nexus__neural_node_deploy({
cluster_id: cluster.cluster_id,
node_type: "worker",
model: "large",
capabilities: ["training", "data_augmentation"]
})
// Start training
await mcp__flow-nexus__neural_train_distributed({
cluster_id: cluster.cluster_id,
dataset: "custom_images",
epochs: 100,
batch_size: 64,
learning_rate: 0.001,
optimizer: "adam"
})
NLP Sentiment Analysis
// Use pre-built template
const deployment = await mcp__flow-nexus__neural_deploy_template({
template_id: "sentiment-analysis-v2",
custom_config: {
training: {
epochs: 30,
batch_size: 16
}
}
})
// Run inference
const result = await mcp__flow-nexus__neural_predict({
model_id: deployment.model_id,
input: ["This product is amazing!", "Terrible experience."]
})
Time Series Forecasting
// Train LSTM model
const training = await mcp__flow-nexus__neural_train({
config: {
architecture: {
type: "lstm",
layers: [
{ type: "lstm", units: 128, return_sequences: true },
{ type: "dropout", rate: 0.2 },
{ type: "lstm", units: 64 },
{ type: "dense", units: 1 }
]
},
training: {
epochs: 150,
batch_size: 64,
learning_rate: 0.01,
optimizer: "adam"
}
},
tier: "medium"
})
// Monitor progress
const status = await mcp__flow-nexus__neural_training_status({
job_id: training.job_id
})
Federated Learning for Privacy
// Initialize federated cluster
const cluster = await mcp__flow-nexus__neural_cluster_init({
name: "federated-medical-cluster",
architecture: "transformer",
topology: "mesh",
consensus: "proof-of-learning",
daaEnabled: true
})
// Deploy nodes across different locations
for (let i = 0; i < 5; i++) {
await mcp__flow-nexus__neural_node_deploy({
cluster_id: cluster.cluster_id,
node_type: "worker",
model: "large",
autonomy: 0.9
})
}
// Train with federated learning (data never leaves nodes)
await mcp__flow-nexus__neural_train_distributed({
cluster_id: cluster.cluster_id,
dataset: "medical_records_distributed",
epochs: 200,
federated: true,
aggregation_rounds: 100
})
Architecture Patterns
Feedforward Networks
Best for: Classification, regression, simple pattern recognition
{
type: "feedforward",
layers: [
{ type: "dense", units: 256, activation: "relu" },
{ type: "dropout", rate: 0.3 },
{ type: "dense", units: 128, activation: "relu" },
{ type: "dense", units: 10, activation: "softmax" }
]
}
LSTM Networks
Best for: Time series, sequences, forecasting
{
type: "lstm",
layers: [
{ type: "lstm", units: 128, return_sequences: true },
{ type: "lstm", units: 64 },
{ type: "dense", units: 1 }
]
}
Transformers
Best for: NLP, attention mechanisms, large-scale text
{
type: "transformer",
layers: [
{ type: "embedding", vocab_size: 10000, embedding_dim: 512 },
{ type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
{ type: "global_average_pooling" },
{ type: "dense", units: 2, activation: "softmax" }
]
}
GANs
Best for: Generative tasks, image synthesis
{
type: "gan",
generator_layers: [...],
discriminator_layers: [...]
}
Autoencoders
Best for: Dimensionality reduction, anomaly detection
{
type: "autoencoder",
encoder_layers: [
{ type: "dense", units: 128, activation: "relu" },
{ type: "dense", units: 64, activation: "relu" }
],
decoder_layers: [
{ type: "dense", units: 128, activation: "relu" },
{ type: "dense", units: input_dim, activation: "sigmoid" }
]
}
Best Practices
- Start Small: Begin with
nanoorminitiers for experimentation - Use Templates: Leverage marketplace templates for common tasks
- Monitor Training: Check status regularly to catch issues early
- Benchmark Models: Always benchmark before production deployment
- Distributed Training: Use clusters for large models (>1B parameters)
- Federated Learning: Use for privacy-sensitive data
- Version Models: Publish successful models as templates for reuse
- Validate Thoroughly: Use validation workflows before deployment
Troubleshooting
Training Stalled
// Check cluster status
const status = await mcp__flow-nexus__neural_cluster_status({
cluster_id: "cluster_id"
})
// Terminate and restart if needed
await mcp__flow-nexus__neural_cluster_terminate({
cluster_id: "cluster_id"
})
Low Accuracy
- Increase epochs
- Adjust learning rate
- Add regularization (dropout)
- Try different optimizer
- Use data augmentation
Out of Memory
- Reduce batch size
- Use smaller model tier
- Enable gradient accumulation
- Use distributed training
Related Skills
flow-nexus-sandbox- E2B sandbox managementflow-nexus-swarm- AI swarm orchestrationflow-nexus-workflow- Workflow automation
Resources
- Flow Nexus Docs: https://flow-nexus.ruv.io/docs
- Neural Network Guide: https://flow-nexus.ruv.io/docs/neural
- Template Marketplace: https://flow-nexus.ruv.io/templates
- API Reference: https://flow-nexus.ruv.io/api
Note: Distributed training requires authentication. Register at https://flow-nexus.ruv.io or use npx flow-nexus@latest register.
GitHub 仓库
相关推荐技能
pytorch-fsdp
设计这个Claude Skill为开发者提供PyTorch FSDP的专家级指导,涵盖参数分片、混合精度和CPU卸载等关键特性。它适用于实现和调试分布式训练解决方案,特别是处理大规模模型时的性能优化。开发者可以快速获取FSDP最佳实践、API使用方法和常见问题排查帮助。
deepspeed
设计该Skill为开发者提供DeepSpeed分布式训练的专家指导,涵盖ZeRO优化阶段、流水线并行和混合精度训练等核心功能。它适用于实现DeepSpeed解决方案、调试代码或学习最佳实践的场景。通过该Skill,开发者能快速获得API使用、特性配置和性能优化的专业支持。
when-optimizing-agent-learning-use-reasoningbank-intelligence
其他该Skill通过ReasoningBank实现自适应学习,帮助开发者在优化智能体时进行模式识别和策略调优。它适用于需要提升重复任务效率或改进决策策略的场景,可输出训练模型和优化建议。关键能力包括持续性能改进和模式库构建,依赖claude-flow与reasoningbank组件。
flow-nexus-neural
其他Flow Nexus Neural 让开发者能够在分布式 E2B 沙盒环境中训练和部署神经网络。它支持多种架构(如前馈、LSTM、GAN、Transformer)的自定义模型训练,并提供预构建模板。开发者可以快速启动单节点或多节点分布式训练任务,实现端到端的机器学习工作流管理。
