sequential-thinking
关于
This Claude Skill enables systematic step-by-step reasoning for complex problems through iterative thought steps with revision and branching capabilities. It's ideal for multi-stage analysis, design planning, and problem decomposition where scope may evolve. Key features include dynamic scope adjustment, revision tracking, and alternative path exploration while maintaining full context.
技能文档
Sequential Thinking
Enables structured problem-solving through iterative reasoning with revision and branching capabilities.
Core Capabilities
- Iterative reasoning: Break complex problems into sequential thought steps
- Dynamic scope: Adjust total thought count as understanding evolves
- Revision tracking: Reconsider and modify previous conclusions
- Branch exploration: Explore alternative reasoning paths from any point
- Maintained context: Keep track of reasoning chain throughout analysis
When to Use
Use mcp__reasoning__sequentialthinking when:
- Problem requires multiple interconnected reasoning steps
- Initial scope or approach is uncertain
- Need to filter through complexity to find core issues
- May need to backtrack or revise earlier conclusions
- Want to explore alternative solution paths
Don't use for: Simple queries, direct facts, or single-step tasks.
Basic Usage
The MCP tool mcp__reasoning__sequentialthinking accepts these parameters:
Required Parameters
thought(string): Current reasoning stepnextThoughtNeeded(boolean): Whether more reasoning is neededthoughtNumber(integer): Current step number (starts at 1)totalThoughts(integer): Estimated total steps needed
Optional Parameters
isRevision(boolean): Indicates this revises previous thinkingrevisesThought(integer): Which thought number is being reconsideredbranchFromThought(integer): Thought number to branch frombranchId(string): Identifier for this reasoning branch
Workflow Pattern
1. Start with initial thought (thoughtNumber: 1)
2. For each step:
- Express current reasoning in `thought`
- Estimate remaining work via `totalThoughts` (adjust dynamically)
- Set `nextThoughtNeeded: true` to continue
3. When reaching conclusion, set `nextThoughtNeeded: false`
Simple Example
// First thought
{
thought: "Problem involves optimizing database queries. Need to identify bottlenecks first.",
thoughtNumber: 1,
totalThoughts: 5,
nextThoughtNeeded: true
}
// Second thought
{
thought: "Analyzing query patterns reveals N+1 problem in user fetches.",
thoughtNumber: 2,
totalThoughts: 6, // Adjusted scope
nextThoughtNeeded: true
}
// ... continue until done
Advanced Features
For revision patterns, branching strategies, and complex workflows, see:
- Advanced Usage - Revision and branching patterns
- Examples - Real-world use cases
Tips
- Start with rough estimate for
totalThoughts, refine as you progress - Use revision when assumptions prove incorrect
- Branch when multiple approaches seem viable
- Express uncertainty explicitly in thoughts
- Adjust scope freely - accuracy matters less than progress visibility
快速安装
/plugin add https://github.com/Elios-FPT/EliosCodePracticeService/tree/main/sequential-thinking在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
project-structure
元这个Skill为开发者提供全面的项目目录结构设计指南和最佳实践。它涵盖了多种项目类型包括monorepo、前后端框架、库和扩展的标准组织结构。帮助团队创建可扩展、易维护的代码架构,特别适用于新项目设计、遗留项目迁移和团队规范制定。
issue-documentation
元该Skill为开发者提供标准化的issue文档模板和指南,适用于创建bug报告、GitHub/Linear/Jira问题等场景。它能系统化地记录问题状况、复现步骤、根本原因、解决方案和影响范围,确保团队沟通清晰高效。通过实施主流问题跟踪系统的最佳实践,帮助开发者生成结构完整的故障排除文档和事件报告。
llamaindex
元LlamaIndex是一个专门构建RAG应用的开发框架,提供300多种数据连接器用于文档摄取、索引和查询。它具备向量索引、查询引擎和智能代理等核心功能,支持构建文档问答、知识检索和聊天机器人等数据密集型应用。开发者可用它快速搭建连接私有数据与LLM的RAG管道。
