webapp-testing
关于
This Claude Skill provides a Playwright-based toolkit for testing local web applications through Python scripts. It enables frontend verification, UI debugging, screenshot capture, and log viewing while managing server lifecycles. Use it for browser automation tasks but run scripts directly rather than reading their source code to avoid context pollution.
快速安装
Claude Code
推荐/plugin add https://github.com/lifangda/claude-pluginsgit clone https://github.com/lifangda/claude-plugins.git ~/.claude/skills/webapp-testing在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Web Application Testing
To test local web applications, write native Python Playwright scripts.
Helper Scripts Available:
scripts/with_server.py- Manages server lifecycle (supports multiple servers)
Always run scripts with --help first to see usage. DO NOT read the source until you try running the script first and find that a customized solution is abslutely necessary. These scripts can be very large and thus pollute your context window. They exist to be called directly as black-box scripts rather than ingested into your context window.
Decision Tree: Choosing Your Approach
User task → Is it static HTML?
├─ Yes → Read HTML file directly to identify selectors
│ ├─ Success → Write Playwright script using selectors
│ └─ Fails/Incomplete → Treat as dynamic (below)
│
└─ No (dynamic webapp) → Is the server already running?
├─ No → Run: python scripts/with_server.py --help
│ Then use the helper + write simplified Playwright script
│
└─ Yes → Reconnaissance-then-action:
1. Navigate and wait for networkidle
2. Take screenshot or inspect DOM
3. Identify selectors from rendered state
4. Execute actions with discovered selectors
Example: Using with_server.py
To start a server, run --help first, then use the helper:
Single server:
python scripts/with_server.py --server "npm run dev" --port 5173 -- python your_automation.py
Multiple servers (e.g., backend + frontend):
python scripts/with_server.py \
--server "cd backend && python server.py" --port 3000 \
--server "cd frontend && npm run dev" --port 5173 \
-- python your_automation.py
To create an automation script, include only Playwright logic (servers are managed automatically):
from playwright.sync_api import sync_playwright
with sync_playwright() as p:
browser = p.chromium.launch(headless=True) # Always launch chromium in headless mode
page = browser.new_page()
page.goto('http://localhost:5173') # Server already running and ready
page.wait_for_load_state('networkidle') # CRITICAL: Wait for JS to execute
# ... your automation logic
browser.close()
Reconnaissance-Then-Action Pattern
-
Inspect rendered DOM:
page.screenshot(path='/tmp/inspect.png', full_page=True) content = page.content() page.locator('button').all() -
Identify selectors from inspection results
-
Execute actions using discovered selectors
Common Pitfall
❌ Don't inspect the DOM before waiting for networkidle on dynamic apps
✅ Do wait for page.wait_for_load_state('networkidle') before inspection
Best Practices
- Use bundled scripts as black boxes - To accomplish a task, consider whether one of the scripts available in
scripts/can help. These scripts handle common, complex workflows reliably without cluttering the context window. Use--helpto see usage, then invoke directly. - Use
sync_playwright()for synchronous scripts - Always close the browser when done
- Use descriptive selectors:
text=,role=, CSS selectors, or IDs - Add appropriate waits:
page.wait_for_selector()orpage.wait_for_timeout()
Reference Files
- examples/ - Examples showing common patterns:
element_discovery.py- Discovering buttons, links, and inputs on a pagestatic_html_automation.py- Using file:// URLs for local HTMLconsole_logging.py- Capturing console logs during automation
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
