MCP HubMCP Hub
返回技能列表

evaluating-llms-harness

zechenzhangAGI
更新于 Today
85 次查看
62
2
62
在 GitHub 上查看
测试aitestingapi

关于

This Claude Skill runs the lm-evaluation-harness to benchmark LLMs across 60+ standardized academic tasks like MMLU and GSM8K. It's designed for developers to compare model quality, track training progress, or report academic results. The tool supports various backends including HuggingFace and vLLM models.

技能文档

lm-evaluation-harness - LLM Benchmarking

Quick start

lm-evaluation-harness evaluates LLMs across 60+ academic benchmarks using standardized prompts and metrics.

Installation:

pip install lm-eval

Evaluate any HuggingFace model:

lm_eval --model hf \
  --model_args pretrained=meta-llama/Llama-2-7b-hf \
  --tasks mmlu,gsm8k,hellaswag \
  --device cuda:0 \
  --batch_size 8

View available tasks:

lm_eval --tasks list

Common workflows

Workflow 1: Standard benchmark evaluation

Evaluate model on core benchmarks (MMLU, GSM8K, HumanEval).

Copy this checklist:

Benchmark Evaluation:
- [ ] Step 1: Choose benchmark suite
- [ ] Step 2: Configure model
- [ ] Step 3: Run evaluation
- [ ] Step 4: Analyze results

Step 1: Choose benchmark suite

Core reasoning benchmarks:

  • MMLU (Massive Multitask Language Understanding) - 57 subjects, multiple choice
  • GSM8K - Grade school math word problems
  • HellaSwag - Common sense reasoning
  • TruthfulQA - Truthfulness and factuality
  • ARC (AI2 Reasoning Challenge) - Science questions

Code benchmarks:

  • HumanEval - Python code generation (164 problems)
  • MBPP (Mostly Basic Python Problems) - Python coding

Standard suite (recommended for model releases):

--tasks mmlu,gsm8k,hellaswag,truthfulqa,arc_challenge

Step 2: Configure model

HuggingFace model:

lm_eval --model hf \
  --model_args pretrained=meta-llama/Llama-2-7b-hf,dtype=bfloat16 \
  --tasks mmlu \
  --device cuda:0 \
  --batch_size auto  # Auto-detect optimal batch size

Quantized model (4-bit/8-bit):

lm_eval --model hf \
  --model_args pretrained=meta-llama/Llama-2-7b-hf,load_in_4bit=True \
  --tasks mmlu \
  --device cuda:0

Custom checkpoint:

lm_eval --model hf \
  --model_args pretrained=/path/to/my-model,tokenizer=/path/to/tokenizer \
  --tasks mmlu \
  --device cuda:0

Step 3: Run evaluation

# Full MMLU evaluation (57 subjects)
lm_eval --model hf \
  --model_args pretrained=meta-llama/Llama-2-7b-hf \
  --tasks mmlu \
  --num_fewshot 5 \  # 5-shot evaluation (standard)
  --batch_size 8 \
  --output_path results/ \
  --log_samples  # Save individual predictions

# Multiple benchmarks at once
lm_eval --model hf \
  --model_args pretrained=meta-llama/Llama-2-7b-hf \
  --tasks mmlu,gsm8k,hellaswag,truthfulqa,arc_challenge \
  --num_fewshot 5 \
  --batch_size 8 \
  --output_path results/llama2-7b-eval.json

Step 4: Analyze results

Results saved to results/llama2-7b-eval.json:

{
  "results": {
    "mmlu": {
      "acc": 0.459,
      "acc_stderr": 0.004
    },
    "gsm8k": {
      "exact_match": 0.142,
      "exact_match_stderr": 0.006
    },
    "hellaswag": {
      "acc_norm": 0.765,
      "acc_norm_stderr": 0.004
    }
  },
  "config": {
    "model": "hf",
    "model_args": "pretrained=meta-llama/Llama-2-7b-hf",
    "num_fewshot": 5
  }
}

Workflow 2: Track training progress

Evaluate checkpoints during training.

Training Progress Tracking:
- [ ] Step 1: Set up periodic evaluation
- [ ] Step 2: Choose quick benchmarks
- [ ] Step 3: Automate evaluation
- [ ] Step 4: Plot learning curves

Step 1: Set up periodic evaluation

Evaluate every N training steps:

#!/bin/bash
# eval_checkpoint.sh

CHECKPOINT_DIR=$1
STEP=$2

lm_eval --model hf \
  --model_args pretrained=$CHECKPOINT_DIR/checkpoint-$STEP \
  --tasks gsm8k,hellaswag \
  --num_fewshot 0 \  # 0-shot for speed
  --batch_size 16 \
  --output_path results/step-$STEP.json

Step 2: Choose quick benchmarks

Fast benchmarks for frequent evaluation:

  • HellaSwag: ~10 minutes on 1 GPU
  • GSM8K: ~5 minutes
  • PIQA: ~2 minutes

Avoid for frequent eval (too slow):

  • MMLU: ~2 hours (57 subjects)
  • HumanEval: Requires code execution

Step 3: Automate evaluation

Integrate with training script:

# In training loop
if step % eval_interval == 0:
    model.save_pretrained(f"checkpoints/step-{step}")

    # Run evaluation
    os.system(f"./eval_checkpoint.sh checkpoints step-{step}")

Or use PyTorch Lightning callbacks:

from pytorch_lightning import Callback

class EvalHarnessCallback(Callback):
    def on_validation_epoch_end(self, trainer, pl_module):
        step = trainer.global_step
        checkpoint_path = f"checkpoints/step-{step}"

        # Save checkpoint
        trainer.save_checkpoint(checkpoint_path)

        # Run lm-eval
        os.system(f"lm_eval --model hf --model_args pretrained={checkpoint_path} ...")

Step 4: Plot learning curves

import json
import matplotlib.pyplot as plt

# Load all results
steps = []
mmlu_scores = []

for file in sorted(glob.glob("results/step-*.json")):
    with open(file) as f:
        data = json.load(f)
        step = int(file.split("-")[1].split(".")[0])
        steps.append(step)
        mmlu_scores.append(data["results"]["mmlu"]["acc"])

# Plot
plt.plot(steps, mmlu_scores)
plt.xlabel("Training Step")
plt.ylabel("MMLU Accuracy")
plt.title("Training Progress")
plt.savefig("training_curve.png")

Workflow 3: Compare multiple models

Benchmark suite for model comparison.

Model Comparison:
- [ ] Step 1: Define model list
- [ ] Step 2: Run evaluations
- [ ] Step 3: Generate comparison table

Step 1: Define model list

# models.txt
meta-llama/Llama-2-7b-hf
meta-llama/Llama-2-13b-hf
mistralai/Mistral-7B-v0.1
microsoft/phi-2

Step 2: Run evaluations

#!/bin/bash
# eval_all_models.sh

TASKS="mmlu,gsm8k,hellaswag,truthfulqa"

while read model; do
    echo "Evaluating $model"

    # Extract model name for output file
    model_name=$(echo $model | sed 's/\//-/g')

    lm_eval --model hf \
      --model_args pretrained=$model,dtype=bfloat16 \
      --tasks $TASKS \
      --num_fewshot 5 \
      --batch_size auto \
      --output_path results/$model_name.json

done < models.txt

Step 3: Generate comparison table

import json
import pandas as pd

models = [
    "meta-llama-Llama-2-7b-hf",
    "meta-llama-Llama-2-13b-hf",
    "mistralai-Mistral-7B-v0.1",
    "microsoft-phi-2"
]

tasks = ["mmlu", "gsm8k", "hellaswag", "truthfulqa"]

results = []
for model in models:
    with open(f"results/{model}.json") as f:
        data = json.load(f)
        row = {"Model": model.replace("-", "/")}
        for task in tasks:
            # Get primary metric for each task
            metrics = data["results"][task]
            if "acc" in metrics:
                row[task.upper()] = f"{metrics['acc']:.3f}"
            elif "exact_match" in metrics:
                row[task.upper()] = f"{metrics['exact_match']:.3f}"
        results.append(row)

df = pd.DataFrame(results)
print(df.to_markdown(index=False))

Output:

| Model                  | MMLU  | GSM8K | HELLASWAG | TRUTHFULQA |
|------------------------|-------|-------|-----------|------------|
| meta-llama/Llama-2-7b  | 0.459 | 0.142 | 0.765     | 0.391      |
| meta-llama/Llama-2-13b | 0.549 | 0.287 | 0.801     | 0.430      |
| mistralai/Mistral-7B   | 0.626 | 0.395 | 0.812     | 0.428      |
| microsoft/phi-2        | 0.560 | 0.613 | 0.682     | 0.447      |

Workflow 4: Evaluate with vLLM (faster inference)

Use vLLM backend for 5-10x faster evaluation.

vLLM Evaluation:
- [ ] Step 1: Install vLLM
- [ ] Step 2: Configure vLLM backend
- [ ] Step 3: Run evaluation

Step 1: Install vLLM

pip install vllm

Step 2: Configure vLLM backend

lm_eval --model vllm \
  --model_args pretrained=meta-llama/Llama-2-7b-hf,tensor_parallel_size=1,dtype=auto,gpu_memory_utilization=0.8 \
  --tasks mmlu \
  --batch_size auto

Step 3: Run evaluation

vLLM is 5-10× faster than standard HuggingFace:

# Standard HF: ~2 hours for MMLU on 7B model
lm_eval --model hf \
  --model_args pretrained=meta-llama/Llama-2-7b-hf \
  --tasks mmlu \
  --batch_size 8

# vLLM: ~15-20 minutes for MMLU on 7B model
lm_eval --model vllm \
  --model_args pretrained=meta-llama/Llama-2-7b-hf,tensor_parallel_size=2 \
  --tasks mmlu \
  --batch_size auto

When to use vs alternatives

Use lm-evaluation-harness when:

  • Benchmarking models for academic papers
  • Comparing model quality across standard tasks
  • Tracking training progress
  • Reporting standardized metrics (everyone uses same prompts)
  • Need reproducible evaluation

Use alternatives instead:

  • HELM (Stanford): Broader evaluation (fairness, efficiency, calibration)
  • AlpacaEval: Instruction-following evaluation with LLM judges
  • MT-Bench: Conversational multi-turn evaluation
  • Custom scripts: Domain-specific evaluation

Common issues

Issue: Evaluation too slow

Use vLLM backend:

lm_eval --model vllm \
  --model_args pretrained=model-name,tensor_parallel_size=2

Or reduce fewshot examples:

--num_fewshot 0  # Instead of 5

Or evaluate subset of MMLU:

--tasks mmlu_stem  # Only STEM subjects

Issue: Out of memory

Reduce batch size:

--batch_size 1  # Or --batch_size auto

Use quantization:

--model_args pretrained=model-name,load_in_8bit=True

Enable CPU offloading:

--model_args pretrained=model-name,device_map=auto,offload_folder=offload

Issue: Different results than reported

Check fewshot count:

--num_fewshot 5  # Most papers use 5-shot

Check exact task name:

--tasks mmlu  # Not mmlu_direct or mmlu_fewshot

Verify model and tokenizer match:

--model_args pretrained=model-name,tokenizer=same-model-name

Issue: HumanEval not executing code

Install execution dependencies:

pip install human-eval

Enable code execution:

lm_eval --model hf \
  --model_args pretrained=model-name \
  --tasks humaneval \
  --allow_code_execution  # Required for HumanEval

Advanced topics

Benchmark descriptions: See references/benchmark-guide.md for detailed description of all 60+ tasks, what they measure, and interpretation.

Custom tasks: See references/custom-tasks.md for creating domain-specific evaluation tasks.

API evaluation: See references/api-evaluation.md for evaluating OpenAI, Anthropic, and other API models.

Multi-GPU strategies: See references/distributed-eval.md for data parallel and tensor parallel evaluation.

Hardware requirements

  • GPU: NVIDIA (CUDA 11.8+), works on CPU (very slow)
  • VRAM:
    • 7B model: 16GB (bf16) or 8GB (8-bit)
    • 13B model: 28GB (bf16) or 14GB (8-bit)
    • 70B model: Requires multi-GPU or quantization
  • Time (7B model, single A100):
    • HellaSwag: 10 minutes
    • GSM8K: 5 minutes
    • MMLU (full): 2 hours
    • HumanEval: 20 minutes

Resources

快速安装

/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/lm-evaluation-harness

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

zechenzhangAGI/AI-research-SKILLs
路径: 11-evaluation/lm-evaluation-harness
aiai-researchclaudeclaude-codeclaude-skillscodex

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

go-test

go-test Skill为Go开发者提供全面的测试指导,涵盖单元测试、性能基准测试和集成测试的最佳实践。它能帮助您正确实现表驱动测试、子测试组织、mock接口和竞态检测,同时指导测试覆盖率分析和性能基准测试。当您编写_test.go文件、设计测试用例或优化测试策略时,这个Skill能确保您遵循Go语言的标准测试惯例。

查看技能