analyzing-text-with-nlp
关于
This Claude Skill enables text analysis using natural language processing through the nlp-text-analyzer plugin. It performs sentiment analysis, keyword extraction, and topic modeling on textual data when triggered by NLP-related requests. Developers should use this skill for extracting insights from text using AI/ML techniques.
技能文档
Overview
This skill empowers Claude to analyze text using the nlp-text-analyzer plugin, extracting meaningful information and insights. It facilitates tasks such as sentiment analysis, keyword extraction, and topic modeling, enabling a deeper understanding of textual data.
How It Works
- Request Analysis: Claude receives a user request to analyze text.
- Text Processing: The nlp-text-analyzer plugin processes the text using NLP techniques.
- Insight Extraction: The plugin extracts insights such as sentiment, keywords, and topics.
When to Use This Skill
This skill activates when you need to:
- Perform sentiment analysis on a piece of text.
- Extract keywords from a document.
- Identify the main topics discussed in a text.
Examples
Example 1: Sentiment Analysis
User request: "Analyze the sentiment of this product review: 'I loved the product! It exceeded my expectations.'"
The skill will:
- Process the review text using the nlp-text-analyzer plugin.
- Determine the sentiment as positive and provide a confidence score.
Example 2: Keyword Extraction
User request: "Extract the keywords from this news article about the latest AI advancements."
The skill will:
- Process the article text using the nlp-text-analyzer plugin.
- Identify and return a list of relevant keywords, such as "AI", "advancements", "machine learning", and "neural networks".
Best Practices
- Clarity: Be specific in your requests to ensure accurate and relevant analysis.
- Context: Provide sufficient context to improve the quality of the analysis.
- Iteration: Refine your requests based on the initial results to achieve the desired outcome.
Integration
This skill can be integrated with other tools to provide a comprehensive workflow, such as using the extracted keywords to perform further research or using sentiment analysis to categorize customer feedback.
快速安装
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/nlp-text-analyzer在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
