MCP HubMCP Hub
返回技能列表

analyzing-text-with-nlp

jeremylongshore
更新于 Today
36 次查看
409
51
409
在 GitHub 上查看
wordaidata

关于

This Claude Skill enables text analysis using natural language processing through the nlp-text-analyzer plugin. It performs sentiment analysis, keyword extraction, and topic modeling on textual data when triggered by NLP-related requests. Developers should use this skill for extracting insights from text using AI/ML techniques.

技能文档

Overview

This skill empowers Claude to analyze text using the nlp-text-analyzer plugin, extracting meaningful information and insights. It facilitates tasks such as sentiment analysis, keyword extraction, and topic modeling, enabling a deeper understanding of textual data.

How It Works

  1. Request Analysis: Claude receives a user request to analyze text.
  2. Text Processing: The nlp-text-analyzer plugin processes the text using NLP techniques.
  3. Insight Extraction: The plugin extracts insights such as sentiment, keywords, and topics.

When to Use This Skill

This skill activates when you need to:

  • Perform sentiment analysis on a piece of text.
  • Extract keywords from a document.
  • Identify the main topics discussed in a text.

Examples

Example 1: Sentiment Analysis

User request: "Analyze the sentiment of this product review: 'I loved the product! It exceeded my expectations.'"

The skill will:

  1. Process the review text using the nlp-text-analyzer plugin.
  2. Determine the sentiment as positive and provide a confidence score.

Example 2: Keyword Extraction

User request: "Extract the keywords from this news article about the latest AI advancements."

The skill will:

  1. Process the article text using the nlp-text-analyzer plugin.
  2. Identify and return a list of relevant keywords, such as "AI", "advancements", "machine learning", and "neural networks".

Best Practices

  • Clarity: Be specific in your requests to ensure accurate and relevant analysis.
  • Context: Provide sufficient context to improve the quality of the analysis.
  • Iteration: Refine your requests based on the initial results to achieve the desired outcome.

Integration

This skill can be integrated with other tools to provide a comprehensive workflow, such as using the extracted keywords to perform further research or using sentiment analysis to categorize customer feedback.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/nlp-text-analyzer

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: plugins/ai-ml/nlp-text-analyzer/skills/nlp-text-analyzer
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能