MCP HubMCP Hub
返回技能列表

performing-regression-analysis

jeremylongshore
更新于 Today
34 次查看
409
51
409
在 GitHub 上查看
aidata

关于

This skill enables Claude to perform regression analysis and modeling using a dedicated plugin. It automatically analyzes datasets, generates models (like linear or polynomial), validates them, and provides performance metrics. Use it when users request regression analysis, predictive modeling, or need to understand variable relationships in their data.

技能文档

Overview

This skill enables Claude to analyze data, build regression models, and provide insights into the relationships between variables. It leverages the regression-analysis-tool plugin to automate the process and ensure best practices are followed.

How It Works

  1. Data Analysis: Claude analyzes the provided data to understand its structure and identify potential relationships between variables.
  2. Model Generation: Based on the data, Claude generates appropriate regression models (e.g., linear, polynomial).
  3. Model Validation: Claude validates the generated models to ensure their accuracy and reliability.
  4. Performance Reporting: Claude provides performance metrics and insights into the model's effectiveness.

When to Use This Skill

This skill activates when you need to:

  • Perform regression analysis on a given dataset.
  • Predict future values based on existing data using regression models.
  • Understand the relationship between independent and dependent variables.
  • Evaluate the performance of a regression model.

Examples

Example 1: Predicting House Prices

User request: "Can you build a regression model to predict house prices based on square footage and number of bedrooms?"

The skill will:

  1. Analyze the provided data on house prices, square footage, and number of bedrooms.
  2. Generate a regression model (likely multiple to compare) to predict house prices.
  3. Provide performance metrics such as R-squared and RMSE.

Example 2: Analyzing Sales Trends

User request: "I need to analyze the sales data for the past year and identify any trends using regression analysis."

The skill will:

  1. Analyze the provided sales data.
  2. Generate a regression model to identify trends and patterns in the sales data.
  3. Visualize the trend and report the equation and R-squared value.

Best Practices

  • Data Preparation: Ensure the data is clean and preprocessed before performing regression analysis.
  • Model Selection: Choose the appropriate regression model based on the data and the problem.
  • Validation: Always validate the model to ensure its accuracy and reliability.

Integration

This skill works independently using the regression-analysis-tool plugin. It can be used in conjunction with other data analysis and visualization tools to provide a comprehensive understanding of the data.

快速安装

/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/regression-analysis-tool

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: plugins/ai-ml/regression-analysis-tool/skills/regression-analysis-tool
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能