MCP HubMCP Hub
返回技能列表

test-generator

matteocervelli
更新于 Today
10 次查看
10
10
在 GitHub 上查看
testing

关于

The test-generator skill creates comprehensive test scaffolding for modules, generating proper test structure, fixtures, and mock configurations. It helps developers quickly set up unit and integration tests following pytest or Jest best practices. Use it when starting tests for new modules or adding tests to existing code via the `/generate-tests` command.

技能文档

Test Generator Skill

Purpose

This skill provides comprehensive test scaffolding and templates for quickly setting up unit and integration tests with proper structure, fixtures, and mocking configurations. It guides the creation of well-structured, maintainable tests following best practices.

Activation

On-demand via command: /generate-tests <file-path>

Example:

/generate-tests src/tools/example/core.py

When to Use

  • Starting tests for a new module
  • Need test structure quickly
  • Adding tests to existing code
  • Setting up test fixtures and mocks
  • Creating integration test scaffolding
  • Following pytest or Jest best practices

Resources

testing-templates/unit-test.py

Complete pytest unit test template with:

  • Proper import structure
  • Fixture definitions (sample data, temp files, mocks)
  • Test function templates (Arrange-Act-Assert pattern)
  • Test class templates
  • Parametrize examples
  • Mock/patch configurations
  • Common assertion patterns

testing-templates/integration-test.py

Complete integration test template with:

  • Service integration patterns
  • Database integration examples
  • File system test patterns
  • End-to-end workflow examples
  • Cleanup patterns (tmp_path, fixtures)
  • Real dependency testing (not mocked)

Provides

Test File Scaffolding

  • Proper file structure and organization
  • Naming conventions (test_*.py or *_test.py)
  • Import statements
  • Test class/function structure

Fixture Setup

  • pytest: Sample fixtures for common use cases
  • Jest: Mock implementations and spy configurations
  • Reusable test data fixtures
  • Setup/teardown patterns

Mock Configurations

  • unittest.mock: Mock and patch examples
  • pytest-mock: pytest-specific mocking
  • Jest: Mock modules and functions
  • Spy and stub patterns

Coverage Analysis Helpers

  • Test organization for better coverage
  • Edge case identification
  • Boundary testing patterns

Usage Examples

Example 1: Generate Unit Tests for Module

/generate-tests src/tools/doc_fetcher/core.py

Provides:

  • tests/test_doc_fetcher_core.py structure
  • Fixtures for test data
  • Test cases for each public function
  • Mock configurations for external dependencies

Example 2: Generate Integration Tests for API

/generate-tests src/api/endpoints.py

Provides:

  • tests/integration/test_endpoints.py structure
  • API client fixtures
  • Request/response test patterns
  • End-to-end workflow tests

Example 3: TypeScript/Jest Tests

/generate-tests src/components/Button.tsx

Provides:

  • src/components/Button.test.tsx structure
  • Jest mock configurations
  • Component testing patterns
  • Snapshot testing examples

Test Structure Patterns

Arrange-Act-Assert (AAA) Pattern

def test_function_name_condition_expected():
    """Test description."""
    # Arrange - Set up test data and conditions
    input_data = {"key": "value"}
    expected = "result"

    # Act - Execute the function under test
    result = function_under_test(input_data)

    # Assert - Verify the outcome
    assert result == expected

Test Class Organization

class TestClassName:
    """Tests for ClassName."""

    @pytest.fixture
    def instance(self):
        """Create test instance."""
        return ClassName()

    def test_method_success(self, instance):
        """Test successful method execution."""
        result = instance.method()
        assert result is not None

    def test_method_error_handling(self, instance):
        """Test method handles errors."""
        with pytest.raises(ValueError):
            instance.method(invalid_input)

Parametrized Tests

@pytest.mark.parametrize("input,expected", [
    ("test1", "result1"),
    ("test2", "result2"),
    ("test3", "result3"),
])
def test_function_with_parameters(input, expected):
    """Test function with multiple inputs."""
    result = function_under_test(input)
    assert result == expected

Mocking Patterns

Mock External Dependencies

from unittest.mock import Mock, patch

@patch('module.external_service')
def test_with_mocked_service(mock_service):
    """Test with mocked external service."""
    # Configure mock
    mock_service.return_value = "mocked_response"

    # Test function that uses service
    result = function_that_calls_service()

    # Verify
    assert result == "expected"
    mock_service.assert_called_once()

Fixture-Based Mocks

@pytest.fixture
def mock_database():
    """Mock database connection."""
    db = Mock()
    db.query.return_value = [{"id": 1, "name": "test"}]
    return db

def test_database_query(mock_database):
    """Test database query."""
    result = get_data(mock_database)
    assert len(result) == 1
    mock_database.query.assert_called()

Integration Test Patterns

API Integration Testing

def test_api_endpoint_integration(client):
    """Test API endpoint with real client."""
    # Arrange
    payload = {"data": "test"}

    # Act
    response = client.post("/api/endpoint", json=payload)

    # Assert
    assert response.status_code == 200
    assert response.json()["status"] == "success"

Database Integration Testing

def test_database_integration(db_session):
    """Test database operations."""
    # Arrange
    record = Model(name="test", value=123)

    # Act
    db_session.add(record)
    db_session.commit()

    # Assert
    result = db_session.query(Model).filter_by(name="test").first()
    assert result is not None
    assert result.value == 123

Coverage Considerations

Testing Requirements

  • Aim for 80%+ test coverage
  • Test all public functions and methods
  • Test edge cases and boundary conditions
  • Test error handling paths
  • Test integration points

Coverage Tools

# Python with pytest-cov
pytest --cov=src --cov-report=html

# JavaScript with Jest
jest --coverage

# View coverage report
open htmlcov/index.html  # Python
open coverage/lcov-report/index.html  # JavaScript

Best Practices

Test Naming

  • Use descriptive names: test_function_condition_expected
  • Example: test_process_data_invalid_input_raises_error

Test Organization

  • One test file per source file
  • Group related tests in classes
  • Use fixtures for common setup

Test Independence

  • Tests should not depend on each other
  • Each test should set up its own data
  • Clean up resources after tests

Test Readability

  • Clear test descriptions
  • Simple, focused test cases
  • Readable assertions

Mock Judiciously

  • Mock external dependencies
  • Test real code paths when possible
  • Verify mock interactions

Notes

  • Guidance Only: This skill provides templates and guidance. It does not automatically generate test files.
  • Language Support: Primary support for Python (pytest) and TypeScript/JavaScript (Jest).
  • Customization: Templates should be adapted to specific project needs.
  • Best Practices: Follow project-specific testing conventions and standards.

Used When

  • Starting test implementation for a new module
  • Need quick test structure setup
  • Learning test patterns for the project
  • Ensuring consistent test organization
  • Setting up complex fixtures or mocks
  • Creating integration test scaffolding

快速安装

/plugin add https://github.com/matteocervelli/llms/tree/main/test-generator

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

matteocervelli/llms
路径: .claude/skills/test-generator

相关推荐技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能

go-test

go-test Skill为Go开发者提供全面的测试指导,涵盖单元测试、性能基准测试和集成测试的最佳实践。它能帮助您正确实现表驱动测试、子测试组织、mock接口和竞态检测,同时指导测试覆盖率分析和性能基准测试。当您编写_test.go文件、设计测试用例或优化测试策略时,这个Skill能确保您遵循Go语言的标准测试惯例。

查看技能

generating-unit-tests

该Skill能自动为源代码生成全面的单元测试,支持Jest、pytest、JUnit等多种测试框架。当开发者请求"生成测试"、"创建单元测试"或使用"gut"快捷指令时即可触发。它能智能识别合适框架或按指定框架生成测试用例,显著提升测试效率。

查看技能

component-testing-patterns

测试

这个Skill为开发者提供了基于Vitest浏览器模式的Svelte 5组件测试解决方案。它支持在真实浏览器环境中测试组件,使用Playwright定位器和可访问性模式进行语义化查询。开发者可以利用自动重试的定位器和响应式状态测试来编写可靠的组件测试用例。

查看技能