when-using-sparc-methodology-use-sparc-workflow
关于
This skill orchestrates structured SPARC (Scope, Plan, Act, Review, Consolidate) workflows for developers, enforcing gated checkpoints and explicit confidence ceilings throughout the process. Use it for stage-gated problem-solving and evidence-backed reviews, but not for ad-hoc, single-pass tasks. It ensures intent capture and confidence-aware delivery within a defined operational framework.
快速安装
Claude Code
推荐/plugin add https://github.com/DNYoussef/context-cascadegit clone https://github.com/DNYoussef/context-cascade.git ~/.claude/skills/when-using-sparc-methodology-use-sparc-workflow在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
STANDARD OPERATING PROCEDURE
Purpose
Run SPARC methodology end-to-end with clear intent capture, stage gates, evidence-backed reviews, and confidence-aware delivery.
Trigger Conditions
- Positive: structured problem solving using SPARC, stage-gated delivery, retrospectives, consolidation of learnings.
- Negative: ad-hoc single-pass tasks, prompt-only edits (route to prompt-architect), or new skill weaving (route to skill-forge).
Guardrails
- Skill-Forge structure-first: maintain
SKILL.md,examples/,tests/; addresources//references/or log remediation tasks. - Prompt-Architect hygiene: capture HARD/SOFT/INFERRED constraints per SPARC stage, keep English-only outputs, and declare ceilings.
- Stage safety: set entry/exit criteria for Scope/Plan/Act/Review/Consolidate, enforce registry usage, and keep hook latency budgets.
- Adversarial validation: challenge assumptions each stage, run COV, and document evidence and deltas.
- MCP tagging: store SPARC runs with WHO=
sparc-workflow-{session}and WHY=skill-execution.
Execution Playbook
- Scope: define objective, constraints, and success metrics; confirm inferred assumptions.
- Plan: design approach, assign owners, and set timelines plus rollback points.
- Act: execute tasks with monitoring, TodoWrite updates, and guardrails.
- Review: validate outcomes, run adversarial checks, and log evidence.
- Consolidate: capture learnings, decisions, and next actions.
- Delivery: summarize SPARC path, evidence, risks, and confidence ceiling.
Output Format
- SPARC stage summary with constraints and decisions.
- Evidence log, risks, and follow-ups.
- Confidence:
X.XX (ceiling: TYPE Y.YY) - rationale.
Validation Checklist
- Structure-first assets present or ticketed; examples/tests reflect SPARC flow.
- Stage gates and rollback points defined; registry and hooks validated.
- Adversarial/COV runs stored with MCP tags; confidence ceiling declared; English-only output.
Completion Definition
Workflow is done when SPARC stages complete with evidence, risks are owned, learnings captured, and MCP logs tagged for reuse.
Confidence: 0.70 (ceiling: inference 0.70) - SPARC workflow doc rewritten with skill-forge scaffolding and prompt-architect constraint/confidence discipline.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
Algorithmic Art Generation
元这个Claude Skill帮助开发者使用p5.js创建算法艺术,特别适用于生成式艺术和交互式可视化项目。它支持种子随机性、流场和粒子系统等关键技术,确保艺术作品的重复性和独特性。当讨论生成艺术、算法艺术或计算美学时,该技能会自动激活,指导开发者完成从概念设计到技术实现的全过程。
cloudflare-turnstile
元这个Skill提供完整的Cloudflare Turnstile集成知识,用于在表单、登录页面和API端点中实现无验证码的机器人防护。它支持React/Next.js/Hono等框架集成,涵盖令牌验证、错误代码调试和端到端测试等场景。通过运行后台不可见挑战,在保持用户体验的同时有效阻止自动化流量和垃圾信息。
