MCP HubMCP Hub
返回技能列表

setting-up-distributed-tracing

jeremylongshore
更新于 Today
65 次查看
712
74
712
在 GitHub 上查看
automation

关于

This skill automates distributed tracing setup for microservices to enable end-to-end request visibility. It configures context propagation, span creation, and trace collection when users need observability or performance troubleshooting. Use it when prompted with phrases like "setup tracing" or "configure opentelemetry" for microservices.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/setting-up-distributed-tracing

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill streamlines the process of setting up distributed tracing in a microservices environment. It guides you through the key steps of instrumenting your services, configuring trace context propagation, and selecting a backend for trace collection and analysis, enabling comprehensive monitoring and debugging.

How It Works

  1. Backend Selection: Determines the preferred tracing backend (e.g., Jaeger, Zipkin, Datadog).
  2. Instrumentation Strategy: Designs an instrumentation strategy for each service, focusing on key operations and dependencies.
  3. Configuration Generation: Generates the necessary configuration files and code snippets to enable distributed tracing.

When to Use This Skill

This skill activates when you need to:

  • Implement distributed tracing in a microservices application.
  • Gain end-to-end visibility into request flows across multiple services.
  • Troubleshoot performance bottlenecks and latency issues.

Examples

Example 1: Adding Tracing to a New Microservice

User request: "setup tracing for the new payment service"

The skill will:

  1. Prompt for the preferred tracing backend (e.g., Jaeger).
  2. Generate code snippets for OpenTelemetry instrumentation in the payment service.

Example 2: Troubleshooting Performance Issues

User request: "implement distributed tracing to debug slow checkout process"

The skill will:

  1. Guide the user through instrumenting relevant services in the checkout flow.
  2. Provide configuration examples for context propagation.

Best Practices

  • Backend Choice: Select a tracing backend that aligns with your existing infrastructure and monitoring tools.
  • Sampling Strategy: Implement a sampling strategy to manage trace volume and cost, especially in high-traffic environments.
  • Context Propagation: Ensure proper context propagation across all services to maintain trace continuity.

Integration

This skill can be used in conjunction with other plugins to automate the deployment and configuration of tracing infrastructure. For example, it can integrate with infrastructure-as-code tools to provision Jaeger or Zipkin clusters.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-batch-20251204-000554/plugins/performance/distributed-tracing-setup/skills/distributed-tracing-setup
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

Algorithmic Art Generation

这个Claude Skill帮助开发者使用p5.js创建算法艺术,特别适用于生成式艺术和交互式可视化项目。它支持种子随机性、流场和粒子系统等关键技术,确保艺术作品的重复性和独特性。当讨论生成艺术、算法艺术或计算美学时,该技能会自动激活,指导开发者完成从概念设计到技术实现的全过程。

查看技能

cloudflare-turnstile

这个Skill提供完整的Cloudflare Turnstile集成知识,用于在表单、登录页面和API端点中实现无验证码的机器人防护。它支持React/Next.js/Hono等框架集成,涵盖令牌验证、错误代码调试和端到端测试等场景。通过运行后台不可见挑战,在保持用户体验的同时有效阻止自动化流量和垃圾信息。

查看技能