performance-testing
关于
This Claude Skill helps developers plan and execute performance tests, including load and stress testing, to identify system bottlenecks. It provides structured guidance for defining SLOs, creating realistic user scenarios, and analyzing key metrics like response time and throughput. Use it when optimizing application scalability, resilience, or overall performance before production.
快速安装
Claude Code
推荐/plugin add https://github.com/proffesor-for-testing/agentic-qegit clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/performance-testing在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Performance Testing
<default_to_action> When testing performance or planning load tests:
- DEFINE SLOs: p95 response time, throughput, error rate targets
- IDENTIFY critical paths: revenue flows, high-traffic pages, key APIs
- CREATE realistic scenarios: user journeys, think time, varied data
- EXECUTE with monitoring: CPU, memory, DB queries, network
- ANALYZE bottlenecks and fix before production
Quick Test Type Selection:
- Expected load validation → Load testing
- Find breaking point → Stress testing
- Sudden traffic spike → Spike testing
- Memory leaks, resource exhaustion → Endurance/soak testing
- Horizontal/vertical scaling → Scalability testing
Critical Success Factors:
- Performance is a feature, not an afterthought
- Test early and often, not just before release
- Focus on user-impacting bottlenecks </default_to_action>
Quick Reference Card
When to Use
- Before major releases
- After infrastructure changes
- Before scaling events (Black Friday)
- When setting SLAs/SLOs
Test Types
| Type | Purpose | When |
|---|---|---|
| Load | Expected traffic | Every release |
| Stress | Beyond capacity | Quarterly |
| Spike | Sudden surge | Before events |
| Endurance | Memory leaks | After code changes |
| Scalability | Scaling validation | Infrastructure changes |
Key Metrics
| Metric | Target | Why |
|---|---|---|
| p95 response | < 200ms | User experience |
| Throughput | 10k req/min | Capacity |
| Error rate | < 0.1% | Reliability |
| CPU | < 70% | Headroom |
| Memory | < 80% | Stability |
Tools
- k6: Modern, JS-based, CI/CD friendly
- JMeter: Enterprise, feature-rich
- Artillery: Simple YAML configs
- Gatling: Scala, great reporting
Agent Coordination
qe-performance-tester: Load test orchestrationqe-quality-analyzer: Results analysisqe-production-intelligence: Production comparison
Defining SLOs
Bad: "The system should be fast" Good: "p95 response time < 200ms under 1,000 concurrent users"
export const options = {
thresholds: {
http_req_duration: ['p(95)<200'], // 95% < 200ms
http_req_failed: ['rate<0.01'], // < 1% failures
},
};
Realistic Scenarios
Bad: Every user hits homepage repeatedly Good: Model actual user behavior
// Realistic distribution
// 40% browse, 30% search, 20% details, 10% checkout
export default function () {
const action = Math.random();
if (action < 0.4) browse();
else if (action < 0.7) search();
else if (action < 0.9) viewProduct();
else checkout();
sleep(randomInt(1, 5)); // Think time
}
Common Bottlenecks
Database
Symptoms: Slow queries under load, connection pool exhaustion Fixes: Add indexes, optimize N+1 queries, increase pool size, read replicas
N+1 Queries
// BAD: 100 orders = 101 queries
const orders = await Order.findAll();
for (const order of orders) {
const customer = await Customer.findById(order.customerId);
}
// GOOD: 1 query
const orders = await Order.findAll({ include: [Customer] });
Synchronous Processing
Problem: Blocking operations in request path (sending email during checkout) Fix: Use message queues, process async, return immediately
Memory Leaks
Detection: Endurance testing, memory profiling Common causes: Event listeners not cleaned, caches without eviction
External Dependencies
Solutions: Aggressive timeouts, circuit breakers, caching, graceful degradation
k6 CI/CD Example
// performance-test.js
import http from 'k6/http';
import { check, sleep } from 'k6';
export const options = {
stages: [
{ duration: '1m', target: 50 }, // Ramp up
{ duration: '3m', target: 50 }, // Steady
{ duration: '1m', target: 0 }, // Ramp down
],
thresholds: {
http_req_duration: ['p(95)<200'],
http_req_failed: ['rate<0.01'],
},
};
export default function () {
const res = http.get('https://api.example.com/products');
check(res, {
'status is 200': (r) => r.status === 200,
'response time < 200ms': (r) => r.timings.duration < 200,
});
sleep(1);
}
# GitHub Actions
- name: Run k6 test
uses: grafana/[email protected]
with:
filename: performance-test.js
Analyzing Results
Good Results
Load: 1,000 users | p95: 180ms | Throughput: 5,000 req/s
Error rate: 0.05% | CPU: 65% | Memory: 70%
Problems
Load: 1,000 users | p95: 3,500ms ❌ | Throughput: 500 req/s ❌
Error rate: 5% ❌ | CPU: 95% ❌ | Memory: 90% ❌
Root Cause Analysis
- Correlate metrics: When response time spikes, what changes?
- Check logs: Errors, warnings, slow queries
- Profile code: Where is time spent?
- Monitor resources: CPU, memory, disk
- Trace requests: End-to-end flow
Anti-Patterns
| ❌ Anti-Pattern | ✅ Better |
|---|---|
| Testing too late | Test early and often |
| Unrealistic scenarios | Model real user behavior |
| 0 to 1000 users instantly | Ramp up gradually |
| No monitoring during tests | Monitor everything |
| No baseline | Establish and track trends |
| One-time testing | Continuous performance testing |
Agent-Assisted Performance Testing
// Comprehensive load test
await Task("Load Test", {
target: 'https://api.example.com',
scenarios: {
checkout: { vus: 100, duration: '5m' },
search: { vus: 200, duration: '5m' },
browse: { vus: 500, duration: '5m' }
},
thresholds: {
'http_req_duration': ['p(95)<200'],
'http_req_failed': ['rate<0.01']
}
}, "qe-performance-tester");
// Bottleneck analysis
await Task("Analyze Bottlenecks", {
testResults: perfTest,
metrics: ['cpu', 'memory', 'db_queries', 'network']
}, "qe-performance-tester");
// CI integration
await Task("CI Performance Gate", {
mode: 'smoke',
duration: '1m',
vus: 10,
failOn: { 'p95_response_time': 300, 'error_rate': 0.01 }
}, "qe-performance-tester");
Agent Coordination Hints
Memory Namespace
aqe/performance/
├── results/* - Test execution results
├── baselines/* - Performance baselines
├── bottlenecks/* - Identified bottlenecks
└── trends/* - Historical trends
Fleet Coordination
const perfFleet = await FleetManager.coordinate({
strategy: 'performance-testing',
agents: [
'qe-performance-tester',
'qe-quality-analyzer',
'qe-production-intelligence',
'qe-deployment-readiness'
],
topology: 'sequential'
});
Pre-Production Checklist
- Load test passed (expected traffic)
- Stress test passed (2-3x expected)
- Spike test passed (sudden surge)
- Endurance test passed (24+ hours)
- Database indexes in place
- Caching configured
- Monitoring and alerting set up
- Performance baseline established
Related Skills
- agentic-quality-engineering - Agent coordination
- api-testing-patterns - API performance
- chaos-engineering-resilience - Resilience testing
Remember
Performance is a feature: Test it like functionality Test continuously: Not just before launch Monitor production: Synthetic + real user monitoring Fix what matters: Focus on user-impacting bottlenecks Trend over time: Catch degradation early
With Agents: Agents automate load testing, analyze bottlenecks, and compare with production. Use agents to maintain performance at scale.
GitHub 仓库
相关推荐技能
performance-analysis
其他该Skill为Claude Flow群组提供全面的性能分析,能自动检测通信、处理和网络等瓶颈。它通过实时监控和性能剖析生成详细报告,并给出AI驱动的优化建议。开发者可快速识别系统性能问题并获得具体改进方案。
when-profiling-performance-use-performance-profiler
其他这是一个全面的性能分析工具,帮助开发者识别和优化应用性能瓶颈。它支持跨平台性能分析,涵盖CPU、内存、I/O和网络等关键维度。通过基准测试、瓶颈检测和根因分析,为性能优化提供系统化的解决方案。
performance-analysis
其他这个Claude Skill为开发者提供全面的性能分析和瓶颈检测功能,帮助优化Claude Flow群集的运行效率。它能实时监控系统性能、识别通信和处理瓶颈,并生成详细的优化建议报告。开发者可以用它快速定位性能问题并获得AI驱动的改进方案。
when-analyzing-performance-use-performance-analysis
其他该Skill为Claude Flow集群提供全面的性能分析,帮助开发者识别瓶颈并给出优化建议。它包含性能分析、基准测试等专业代理,适用于已部署工作流的性能调优场景。通过详细的指标分析和具体优化方案,能显著提升集群运行效率。
