ReasoningBank with AgentDB
关于
This skill implements ReasoningBank adaptive learning using AgentDB's high-performance vector database for building self-improving AI agents. It provides trajectory tracking, verdict judgment, memory distillation, and pattern recognition capabilities to optimize decision-making. Use it when creating self-learning agents or implementing experience replay systems that require fast memory access and pattern retrieval.
技能文档
ReasoningBank with AgentDB
What This Skill Does
Provides ReasoningBank adaptive learning patterns using AgentDB's high-performance backend (150x-12,500x faster). Enables agents to learn from experiences, judge outcomes, distill memories, and improve decision-making over time with 100% backward compatibility.
Performance: 150x faster pattern retrieval, 500x faster batch operations, <1ms memory access.
Prerequisites
- Node.js 18+
- AgentDB v1.0.7+ (via agentic-flow)
- Understanding of reinforcement learning concepts (optional)
Quick Start with CLI
Initialize ReasoningBank Database
# Initialize AgentDB for ReasoningBank
npx agentdb@latest init ./.agentdb/reasoningbank.db --dimension 1536
# Start MCP server for Claude Code integration
npx agentdb@latest mcp
claude mcp add agentdb npx agentdb@latest mcp
Migrate from Legacy ReasoningBank
# Automatic migration with validation
npx agentdb@latest migrate --source .swarm/memory.db
# Verify migration
npx agentdb@latest stats ./.agentdb/reasoningbank.db
Quick Start with API
import { createAgentDBAdapter, computeEmbedding } from 'agentic-flow/reasoningbank';
// Initialize ReasoningBank with AgentDB
const rb = await createAgentDBAdapter({
dbPath: '.agentdb/reasoningbank.db',
enableLearning: true, // Enable learning plugins
enableReasoning: true, // Enable reasoning agents
cacheSize: 1000, // 1000 pattern cache
});
// Store successful experience
const query = "How to optimize database queries?";
const embedding = await computeEmbedding(query);
await rb.insertPattern({
id: '',
type: 'experience',
domain: 'database-optimization',
pattern_data: JSON.stringify({
embedding,
pattern: {
query,
approach: 'indexing + query optimization',
outcome: 'success',
metrics: { latency_reduction: 0.85 }
}
}),
confidence: 0.95,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
// Retrieve similar experiences with reasoning
const result = await rb.retrieveWithReasoning(embedding, {
domain: 'database-optimization',
k: 5,
useMMR: true, // Diverse results
synthesizeContext: true, // Rich context synthesis
});
console.log('Memories:', result.memories);
console.log('Context:', result.context);
console.log('Patterns:', result.patterns);
Core ReasoningBank Concepts
1. Trajectory Tracking
Track agent execution paths and outcomes:
// Record trajectory (sequence of actions)
const trajectory = {
task: 'optimize-api-endpoint',
steps: [
{ action: 'analyze-bottleneck', result: 'found N+1 query' },
{ action: 'add-eager-loading', result: 'reduced queries' },
{ action: 'add-caching', result: 'improved latency' }
],
outcome: 'success',
metrics: { latency_before: 2500, latency_after: 150 }
};
const embedding = await computeEmbedding(JSON.stringify(trajectory));
await rb.insertPattern({
id: '',
type: 'trajectory',
domain: 'api-optimization',
pattern_data: JSON.stringify({ embedding, pattern: trajectory }),
confidence: 0.9,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
2. Verdict Judgment
Judge whether a trajectory was successful:
// Retrieve similar past trajectories
const similar = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'api-optimization',
k: 10,
});
// Judge based on similarity to successful patterns
const verdict = similar.memories.filter(m =>
m.pattern.outcome === 'success' &&
m.similarity > 0.8
).length > 5 ? 'likely_success' : 'needs_review';
console.log('Verdict:', verdict);
console.log('Confidence:', similar.memories[0]?.similarity || 0);
3. Memory Distillation
Consolidate similar experiences into patterns:
// Get all experiences in domain
const experiences = await rb.retrieveWithReasoning(embedding, {
domain: 'api-optimization',
k: 100,
optimizeMemory: true, // Automatic consolidation
});
// Distill into high-level pattern
const distilledPattern = {
domain: 'api-optimization',
pattern: 'For N+1 queries: add eager loading, then cache',
success_rate: 0.92,
sample_size: experiences.memories.length,
confidence: 0.95
};
await rb.insertPattern({
id: '',
type: 'distilled-pattern',
domain: 'api-optimization',
pattern_data: JSON.stringify({
embedding: await computeEmbedding(JSON.stringify(distilledPattern)),
pattern: distilledPattern
}),
confidence: 0.95,
usage_count: 0,
success_count: 0,
created_at: Date.now(),
last_used: Date.now(),
});
Integration with Reasoning Agents
AgentDB provides 4 reasoning modules that enhance ReasoningBank:
1. PatternMatcher
Find similar successful patterns:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'problem-solving',
k: 10,
useMMR: true, // Maximal Marginal Relevance for diversity
});
// PatternMatcher returns diverse, relevant memories
result.memories.forEach(mem => {
console.log(`Pattern: ${mem.pattern.approach}`);
console.log(`Similarity: ${mem.similarity}`);
console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
2. ContextSynthesizer
Generate rich context from multiple memories:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'code-optimization',
synthesizeContext: true, // Enable context synthesis
k: 5,
});
// ContextSynthesizer creates coherent narrative
console.log('Synthesized Context:', result.context);
// "Based on 5 similar optimizations, the most effective approach
// involves profiling, identifying bottlenecks, and applying targeted
// improvements. Success rate: 87%"
3. MemoryOptimizer
Automatically consolidate and prune:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'testing',
optimizeMemory: true, // Enable automatic optimization
});
// MemoryOptimizer consolidates similar patterns and prunes low-quality
console.log('Optimizations:', result.optimizations);
// { consolidated: 15, pruned: 3, improved_quality: 0.12 }
4. ExperienceCurator
Filter by quality and relevance:
const result = await rb.retrieveWithReasoning(queryEmbedding, {
domain: 'debugging',
k: 20,
minConfidence: 0.8, // Only high-confidence experiences
});
// ExperienceCurator returns only quality experiences
result.memories.forEach(mem => {
console.log(`Confidence: ${mem.confidence}`);
console.log(`Success Rate: ${mem.success_count / mem.usage_count}`);
});
Legacy API Compatibility
AgentDB maintains 100% backward compatibility with legacy ReasoningBank:
import {
retrieveMemories,
judgeTrajectory,
distillMemories
} from 'agentic-flow/reasoningbank';
// Legacy API works unchanged (uses AgentDB backend automatically)
const memories = await retrieveMemories(query, {
domain: 'code-generation',
agent: 'coder'
});
const verdict = await judgeTrajectory(trajectory, query);
const newMemories = await distillMemories(
trajectory,
verdict,
query,
{ domain: 'code-generation' }
);
Performance Characteristics
- Pattern Search: 150x faster (100µs vs 15ms)
- Memory Retrieval: <1ms (with cache)
- Batch Insert: 500x faster (2ms vs 1s for 100 patterns)
- Trajectory Judgment: <5ms (including retrieval + analysis)
- Memory Distillation: <50ms (consolidate 100 patterns)
Advanced Patterns
Hierarchical Memory
Organize memories by abstraction level:
// Low-level: Specific implementation
await rb.insertPattern({
type: 'concrete',
domain: 'debugging/null-pointer',
pattern_data: JSON.stringify({
embedding,
pattern: { bug: 'NPE in UserService.getUser()', fix: 'Add null check' }
}),
confidence: 0.9,
// ...
});
// Mid-level: Pattern across similar cases
await rb.insertPattern({
type: 'pattern',
domain: 'debugging',
pattern_data: JSON.stringify({
embedding,
pattern: { category: 'null-pointer', approach: 'defensive-checks' }
}),
confidence: 0.85,
// ...
});
// High-level: General principle
await rb.insertPattern({
type: 'principle',
domain: 'software-engineering',
pattern_data: JSON.stringify({
embedding,
pattern: { principle: 'fail-fast with clear errors' }
}),
confidence: 0.95,
// ...
});
Multi-Domain Learning
Transfer learning across domains:
// Learn from backend optimization
const backendExperience = await rb.retrieveWithReasoning(embedding, {
domain: 'backend-optimization',
k: 10,
});
// Apply to frontend optimization
const transferredKnowledge = backendExperience.memories.map(mem => ({
...mem,
domain: 'frontend-optimization',
adapted: true,
}));
CLI Operations
Database Management
# Export trajectories and patterns
npx agentdb@latest export ./.agentdb/reasoningbank.db ./backup.json
# Import experiences
npx agentdb@latest import ./experiences.json
# Get statistics
npx agentdb@latest stats ./.agentdb/reasoningbank.db
# Shows: total patterns, domains, confidence distribution
Migration
# Migrate from legacy ReasoningBank
npx agentdb@latest migrate --source .swarm/memory.db --target .agentdb/reasoningbank.db
# Validate migration
npx agentdb@latest stats .agentdb/reasoningbank.db
Troubleshooting
Issue: Migration fails
# Check source database exists
ls -la .swarm/memory.db
# Run with verbose logging
DEBUG=agentdb:* npx agentdb@latest migrate --source .swarm/memory.db
Issue: Low confidence scores
// Enable context synthesis for better quality
const result = await rb.retrieveWithReasoning(embedding, {
synthesizeContext: true,
useMMR: true,
k: 10,
});
Issue: Memory growing too large
// Enable automatic optimization
const result = await rb.retrieveWithReasoning(embedding, {
optimizeMemory: true, // Consolidates similar patterns
});
// Or manually optimize
await rb.optimize();
Learn More
- AgentDB Integration: node_modules/agentic-flow/docs/AGENTDB_INTEGRATION.md
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
- MCP Integration:
npx agentdb@latest mcp - Website: https://agentdb.ruv.io
Category: Machine Learning / Reinforcement Learning Difficulty: Intermediate Estimated Time: 20-30 minutes
快速安装
/plugin add https://github.com/DNYoussef/ai-chrome-extension/tree/main/reasoningbank-agentdb在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
project-structure
元这个Skill为开发者提供全面的项目目录结构设计指南和最佳实践。它涵盖了多种项目类型包括monorepo、前后端框架、库和扩展的标准组织结构。帮助团队创建可扩展、易维护的代码架构,特别适用于新项目设计、遗留项目迁移和团队规范制定。
issue-documentation
元该Skill为开发者提供标准化的issue文档模板和指南,适用于创建bug报告、GitHub/Linear/Jira问题等场景。它能系统化地记录问题状况、复现步骤、根本原因、解决方案和影响范围,确保团队沟通清晰高效。通过实施主流问题跟踪系统的最佳实践,帮助开发者生成结构完整的故障排除文档和事件报告。
llamaindex
元LlamaIndex是一个专门构建RAG应用的开发框架,提供300多种数据连接器用于文档摄取、索引和查询。它具备向量索引、查询引擎和智能代理等核心功能,支持构建文档问答、知识检索和聊天机器人等数据密集型应用。开发者可用它快速搭建连接私有数据与LLM的RAG管道。
