building-neural-networks
关于
This Claude skill enables developers to create and modify neural network architectures using the neural-network-builder plugin. It handles requests for building new networks, configuring layers, parameters, and training processes for various network types like CNNs, RNNs, and transformers. Use this skill when you need assistance with defining or refining neural network structures.
技能文档
Overview
This skill empowers Claude to design and implement neural networks tailored to specific tasks. It leverages the neural-network-builder plugin to automate the process of defining network architectures, configuring layers, and setting training parameters. This ensures efficient and accurate creation of neural network models.
How It Works
- Analyzing Requirements: Claude analyzes the user's request to understand the desired neural network architecture, task, and performance goals.
- Generating Configuration: Based on the analysis, Claude generates the appropriate configuration for the neural-network-builder plugin, specifying the layers, activation functions, and other relevant parameters.
- Executing Build: Claude executes the
build-nncommand, triggering the neural-network-builder plugin to construct the neural network based on the generated configuration.
When to Use This Skill
This skill activates when you need to:
- Create a new neural network architecture for a specific machine learning task.
- Modify an existing neural network's layers, parameters, or training process.
- Design a neural network using specific layer types, such as convolutional, recurrent, or transformer layers.
Examples
Example 1: Image Classification
User request: "Build a convolutional neural network for image classification with three convolutional layers and two fully connected layers."
The skill will:
- Analyze the request and determine the required CNN architecture.
- Generate the configuration for the
build-nncommand, specifying the layer types, filter sizes, and activation functions.
Example 2: Text Generation
User request: "Define an RNN architecture for text generation with LSTM cells and an embedding layer."
The skill will:
- Analyze the request and determine the required RNN architecture.
- Generate the configuration for the
build-nncommand, specifying the LSTM cell parameters, embedding dimension, and output layer.
Best Practices
- Layer Selection: Choose appropriate layer types (e.g., convolutional, recurrent, transformer) based on the task and data characteristics.
- Parameter Tuning: Experiment with different parameter values (e.g., learning rate, batch size, number of layers) to optimize performance.
- Regularization: Implement regularization techniques (e.g., dropout, L1/L2 regularization) to prevent overfitting.
Integration
This skill integrates with the core Claude Code environment by utilizing the build-nn command provided by the neural-network-builder plugin. It can be combined with other skills for data preprocessing, model evaluation, and deployment.
快速安装
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus/tree/main/neural-network-builder在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
