langchain-architecture
关于
This skill helps developers design LLM applications using the LangChain framework, focusing on agents, memory, and tool integration. It is essential for building autonomous AI agents, implementing complex multi-step workflows, and creating production-grade applications. The core capabilities include managing conversation state and integrating LLMs with external data sources and APIs.
技能文档
LangChain Architecture
Master the LangChain framework for building sophisticated LLM applications with agents, chains, memory, and tool integration.
When to Use This Skill
- Building autonomous AI agents with tool access
- Implementing complex multi-step LLM workflows
- Managing conversation memory and state
- Integrating LLMs with external data sources and APIs
- Creating modular, reusable LLM application components
- Implementing document processing pipelines
- Building production-grade LLM applications
Core Concepts
1. Agents
Autonomous systems that use LLMs to decide which actions to take.
Agent Types:
- ReAct: Reasoning + Acting in interleaved manner
- OpenAI Functions: Leverages function calling API
- Structured Chat: Handles multi-input tools
- Conversational: Optimized for chat interfaces
- Self-Ask with Search: Decomposes complex queries
2. Chains
Sequences of calls to LLMs or other utilities.
Chain Types:
- LLMChain: Basic prompt + LLM combination
- SequentialChain: Multiple chains in sequence
- RouterChain: Routes inputs to specialized chains
- TransformChain: Data transformations between steps
- MapReduceChain: Parallel processing with aggregation
3. Memory
Systems for maintaining context across interactions.
Memory Types:
- ConversationBufferMemory: Stores all messages
- ConversationSummaryMemory: Summarizes older messages
- ConversationBufferWindowMemory: Keeps last N messages
- EntityMemory: Tracks information about entities
- VectorStoreMemory: Semantic similarity retrieval
4. Document Processing
Loading, transforming, and storing documents for retrieval.
Components:
- Document Loaders: Load from various sources
- Text Splitters: Chunk documents intelligently
- Vector Stores: Store and retrieve embeddings
- Retrievers: Fetch relevant documents
- Indexes: Organize documents for efficient access
5. Callbacks
Hooks for logging, monitoring, and debugging.
Use Cases:
- Request/response logging
- Token usage tracking
- Latency monitoring
- Error handling
- Custom metrics collection
Quick Start
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.llms import OpenAI
from langchain.memory import ConversationBufferMemory
# Initialize LLM
llm = OpenAI(temperature=0)
# Load tools
tools = load_tools(["serpapi", "llm-math"], llm=llm)
# Add memory
memory = ConversationBufferMemory(memory_key="chat_history")
# Create agent
agent = initialize_agent(
tools,
llm,
agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION,
memory=memory,
verbose=True
)
# Run agent
result = agent.run("What's the weather in SF? Then calculate 25 * 4")
Architecture Patterns
Pattern 1: RAG with LangChain
from langchain.chains import RetrievalQA
from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import OpenAIEmbeddings
# Load and process documents
loader = TextLoader('documents.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
# Create vector store
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(texts, embeddings)
# Create retrieval chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectorstore.as_retriever(),
return_source_documents=True
)
# Query
result = qa_chain({"query": "What is the main topic?"})
Pattern 2: Custom Agent with Tools
from langchain.agents import Tool, AgentExecutor
from langchain.agents.react.base import ReActDocstoreAgent
from langchain.tools import tool
@tool
def search_database(query: str) -> str:
"""Search internal database for information."""
# Your database search logic
return f"Results for: {query}"
@tool
def send_email(recipient: str, content: str) -> str:
"""Send an email to specified recipient."""
# Email sending logic
return f"Email sent to {recipient}"
tools = [search_database, send_email]
agent = initialize_agent(
tools,
llm,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=True
)
Pattern 3: Multi-Step Chain
from langchain.chains import LLMChain, SequentialChain
from langchain.prompts import PromptTemplate
# Step 1: Extract key information
extract_prompt = PromptTemplate(
input_variables=["text"],
template="Extract key entities from: {text}\n\nEntities:"
)
extract_chain = LLMChain(llm=llm, prompt=extract_prompt, output_key="entities")
# Step 2: Analyze entities
analyze_prompt = PromptTemplate(
input_variables=["entities"],
template="Analyze these entities: {entities}\n\nAnalysis:"
)
analyze_chain = LLMChain(llm=llm, prompt=analyze_prompt, output_key="analysis")
# Step 3: Generate summary
summary_prompt = PromptTemplate(
input_variables=["entities", "analysis"],
template="Summarize:\nEntities: {entities}\nAnalysis: {analysis}\n\nSummary:"
)
summary_chain = LLMChain(llm=llm, prompt=summary_prompt, output_key="summary")
# Combine into sequential chain
overall_chain = SequentialChain(
chains=[extract_chain, analyze_chain, summary_chain],
input_variables=["text"],
output_variables=["entities", "analysis", "summary"],
verbose=True
)
Memory Management Best Practices
Choosing the Right Memory Type
# For short conversations (< 10 messages)
from langchain.memory import ConversationBufferMemory
memory = ConversationBufferMemory()
# For long conversations (summarize old messages)
from langchain.memory import ConversationSummaryMemory
memory = ConversationSummaryMemory(llm=llm)
# For sliding window (last N messages)
from langchain.memory import ConversationBufferWindowMemory
memory = ConversationBufferWindowMemory(k=5)
# For entity tracking
from langchain.memory import ConversationEntityMemory
memory = ConversationEntityMemory(llm=llm)
# For semantic retrieval of relevant history
from langchain.memory import VectorStoreRetrieverMemory
memory = VectorStoreRetrieverMemory(retriever=retriever)
Callback System
Custom Callback Handler
from langchain.callbacks.base import BaseCallbackHandler
class CustomCallbackHandler(BaseCallbackHandler):
def on_llm_start(self, serialized, prompts, **kwargs):
print(f"LLM started with prompts: {prompts}")
def on_llm_end(self, response, **kwargs):
print(f"LLM ended with response: {response}")
def on_llm_error(self, error, **kwargs):
print(f"LLM error: {error}")
def on_chain_start(self, serialized, inputs, **kwargs):
print(f"Chain started with inputs: {inputs}")
def on_agent_action(self, action, **kwargs):
print(f"Agent taking action: {action}")
# Use callback
agent.run("query", callbacks=[CustomCallbackHandler()])
Testing Strategies
import pytest
from unittest.mock import Mock
def test_agent_tool_selection():
# Mock LLM to return specific tool selection
mock_llm = Mock()
mock_llm.predict.return_value = "Action: search_database\nAction Input: test query"
agent = initialize_agent(tools, mock_llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION)
result = agent.run("test query")
# Verify correct tool was selected
assert "search_database" in str(mock_llm.predict.call_args)
def test_memory_persistence():
memory = ConversationBufferMemory()
memory.save_context({"input": "Hi"}, {"output": "Hello!"})
assert "Hi" in memory.load_memory_variables({})['history']
assert "Hello!" in memory.load_memory_variables({})['history']
Performance Optimization
1. Caching
from langchain.cache import InMemoryCache
import langchain
langchain.llm_cache = InMemoryCache()
2. Batch Processing
# Process multiple documents in parallel
from langchain.document_loaders import DirectoryLoader
from concurrent.futures import ThreadPoolExecutor
loader = DirectoryLoader('./docs')
docs = loader.load()
def process_doc(doc):
return text_splitter.split_documents([doc])
with ThreadPoolExecutor(max_workers=4) as executor:
split_docs = list(executor.map(process_doc, docs))
3. Streaming Responses
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
llm = OpenAI(streaming=True, callbacks=[StreamingStdOutCallbackHandler()])
Resources
- references/agents.md: Deep dive on agent architectures
- references/memory.md: Memory system patterns
- references/chains.md: Chain composition strategies
- references/document-processing.md: Document loading and indexing
- references/callbacks.md: Monitoring and observability
- assets/agent-template.py: Production-ready agent template
- assets/memory-config.yaml: Memory configuration examples
- assets/chain-example.py: Complex chain examples
Common Pitfalls
- Memory Overflow: Not managing conversation history length
- Tool Selection Errors: Poor tool descriptions confuse agents
- Context Window Exceeded: Exceeding LLM token limits
- No Error Handling: Not catching and handling agent failures
- Inefficient Retrieval: Not optimizing vector store queries
Production Checklist
- Implement proper error handling
- Add request/response logging
- Monitor token usage and costs
- Set timeout limits for agent execution
- Implement rate limiting
- Add input validation
- Test with edge cases
- Set up observability (callbacks)
- Implement fallback strategies
- Version control prompts and configurations
快速安装
/plugin add https://github.com/camoneart/claude-code/tree/main/langchain-architecture在 Claude Code 中复制并粘贴此命令以安装该技能
GitHub 仓库
相关推荐技能
llamaguard
其他LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
