sglang
About
SGLang is a high-performance LLM serving framework that enables fast structured generation with JSON/regex outputs and constrained decoding. It's ideal for agentic workflows with tool calls and multi-turn conversations, offering significantly faster inference through RadixAttention prefix caching. Use it when you need production-scale performance with shared context across requests.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/sglangCopy and paste this command in Claude Code to install this skill
Documentation
SGLang
High-performance serving framework for LLMs and VLMs with RadixAttention for automatic prefix caching.
When to use SGLang
Use SGLang when:
- Need structured outputs (JSON, regex, grammar)
- Building agents with repeated prefixes (system prompts, tools)
- Agentic workflows with function calling
- Multi-turn conversations with shared context
- Need faster JSON decoding (3× vs standard)
Use vLLM instead when:
- Simple text generation without structure
- Don't need prefix caching
- Want mature, widely-tested production system
Use TensorRT-LLM instead when:
- Maximum single-request latency (no batching needed)
- NVIDIA-only deployment
- Need FP8/INT4 quantization on H100
Quick start
Installation
# pip install (recommended)
pip install "sglang[all]"
# With FlashInfer (faster, CUDA 11.8/12.1)
pip install sglang[all] flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
# From source
git clone https://github.com/sgl-project/sglang.git
cd sglang
pip install -e "python[all]"
Launch server
# Basic server (Llama 3-8B)
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-8B-Instruct \
--port 30000
# With RadixAttention (automatic prefix caching)
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-8B-Instruct \
--port 30000 \
--enable-radix-cache # Default: enabled
# Multi-GPU (tensor parallelism)
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-70B-Instruct \
--tp 4 \
--port 30000
Basic inference
import sglang as sgl
# Set backend
sgl.set_default_backend(sgl.OpenAI("http://localhost:30000/v1"))
# Simple generation
@sgl.function
def simple_gen(s, question):
s += "Q: " + question + "\n"
s += "A:" + sgl.gen("answer", max_tokens=100)
# Run
state = simple_gen.run(question="What is the capital of France?")
print(state["answer"])
# Output: "The capital of France is Paris."
Structured JSON output
import sglang as sgl
@sgl.function
def extract_person(s, text):
s += f"Extract person information from: {text}\n"
s += "Output JSON:\n"
# Constrained JSON generation
s += sgl.gen(
"json_output",
max_tokens=200,
regex=r'\{"name": "[^"]+", "age": \d+, "occupation": "[^"]+"\}'
)
# Run
state = extract_person.run(
text="John Smith is a 35-year-old software engineer."
)
print(state["json_output"])
# Output: {"name": "John Smith", "age": 35, "occupation": "software engineer"}
RadixAttention (Key Innovation)
What it does: Automatically caches and reuses common prefixes across requests.
Performance:
- 5× faster for agentic workloads with shared system prompts
- 10× faster for few-shot prompting with repeated examples
- Zero configuration - works automatically
How it works:
- Builds radix tree of all processed tokens
- Automatically detects shared prefixes
- Reuses KV cache for matching prefixes
- Only computes new tokens
Example (Agent with system prompt):
Request 1: [SYSTEM_PROMPT] + "What's the weather?"
→ Computes full prompt (1000 tokens)
Request 2: [SAME_SYSTEM_PROMPT] + "Book a flight"
→ Reuses system prompt KV cache (998 tokens)
→ Only computes 2 new tokens
→ 5× faster!
Structured generation patterns
JSON with schema
@sgl.function
def structured_extraction(s, article):
s += f"Article: {article}\n\n"
s += "Extract key information as JSON:\n"
# JSON schema constraint
schema = {
"type": "object",
"properties": {
"title": {"type": "string"},
"author": {"type": "string"},
"summary": {"type": "string"},
"sentiment": {"type": "string", "enum": ["positive", "negative", "neutral"]}
},
"required": ["title", "author", "summary", "sentiment"]
}
s += sgl.gen("info", max_tokens=300, json_schema=schema)
state = structured_extraction.run(article="...")
print(state["info"])
# Output: Valid JSON matching schema
Regex-constrained generation
@sgl.function
def extract_email(s, text):
s += f"Extract email from: {text}\n"
s += "Email: "
# Email regex pattern
s += sgl.gen(
"email",
max_tokens=50,
regex=r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
)
state = extract_email.run(text="Contact [email protected] for details")
print(state["email"])
# Output: "[email protected]"
Grammar-based generation
@sgl.function
def generate_code(s, description):
s += f"Generate Python code for: {description}\n"
s += "```python\n"
# EBNF grammar for Python
python_grammar = """
?start: function_def
function_def: "def" NAME "(" [parameters] "):" suite
parameters: parameter ("," parameter)*
parameter: NAME
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT
"""
s += sgl.gen("code", max_tokens=200, grammar=python_grammar)
s += "\n```"
Agent workflows with function calling
import sglang as sgl
# Define tools
tools = [
{
"name": "get_weather",
"description": "Get weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
}
}
},
{
"name": "book_flight",
"description": "Book a flight",
"parameters": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"date": {"type": "string"}
}
}
}
]
@sgl.function
def agent_workflow(s, user_query, tools):
# System prompt (cached with RadixAttention)
s += "You are a helpful assistant with access to tools.\n"
s += f"Available tools: {tools}\n\n"
# User query
s += f"User: {user_query}\n"
s += "Assistant: "
# Generate with function calling
s += sgl.gen(
"response",
max_tokens=200,
tools=tools, # SGLang handles tool call format
stop=["User:", "\n\n"]
)
# Multiple queries reuse system prompt
state1 = agent_workflow.run(
user_query="What's the weather in NYC?",
tools=tools
)
# First call: Computes full system prompt
state2 = agent_workflow.run(
user_query="Book a flight to LA",
tools=tools
)
# Second call: Reuses system prompt (5× faster)
Performance benchmarks
RadixAttention speedup
Few-shot prompting (10 examples in prompt):
- vLLM: 2.5 sec/request
- SGLang: 0.25 sec/request (10× faster)
- Throughput: 4× higher
Agent workflows (1000-token system prompt):
- vLLM: 1.8 sec/request
- SGLang: 0.35 sec/request (5× faster)
JSON decoding:
- Standard: 45 tok/s
- SGLang: 135 tok/s (3× faster)
Throughput (Llama 3-8B, A100)
| Workload | vLLM | SGLang | Speedup |
|---|---|---|---|
| Simple generation | 2500 tok/s | 2800 tok/s | 1.12× |
| Few-shot (10 examples) | 500 tok/s | 5000 tok/s | 10× |
| Agent (tool calls) | 800 tok/s | 4000 tok/s | 5× |
| JSON output | 600 tok/s | 2400 tok/s | 4× |
Multi-turn conversations
@sgl.function
def multi_turn_chat(s, history, new_message):
# System prompt (always cached)
s += "You are a helpful AI assistant.\n\n"
# Conversation history (cached as it grows)
for msg in history:
s += f"{msg['role']}: {msg['content']}\n"
# New user message (only new part)
s += f"User: {new_message}\n"
s += "Assistant: "
s += sgl.gen("response", max_tokens=200)
# Turn 1
history = []
state = multi_turn_chat.run(history=history, new_message="Hi there!")
history.append({"role": "User", "content": "Hi there!"})
history.append({"role": "Assistant", "content": state["response"]})
# Turn 2 (reuses Turn 1 KV cache)
state = multi_turn_chat.run(history=history, new_message="What's 2+2?")
# Only computes new message (much faster!)
# Turn 3 (reuses Turn 1 + Turn 2 KV cache)
state = multi_turn_chat.run(history=history, new_message="Tell me a joke")
# Progressively faster as history grows
Advanced features
Speculative decoding
# Launch with draft model (2-3× faster)
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-70B-Instruct \
--speculative-model meta-llama/Meta-Llama-3-8B-Instruct \
--speculative-num-steps 5
Multi-modal (vision models)
@sgl.function
def describe_image(s, image_path):
s += sgl.image(image_path)
s += "Describe this image in detail: "
s += sgl.gen("description", max_tokens=200)
state = describe_image.run(image_path="photo.jpg")
print(state["description"])
Batching and parallel requests
# Automatic batching (continuous batching)
states = sgl.run_batch(
[
simple_gen.bind(question="What is AI?"),
simple_gen.bind(question="What is ML?"),
simple_gen.bind(question="What is DL?"),
]
)
# All 3 processed in single batch (efficient)
OpenAI-compatible API
# Start server with OpenAI API
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-8B-Instruct \
--port 30000
# Use with OpenAI client
curl http://localhost:30000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "default",
"messages": [
{"role": "system", "content": "You are helpful"},
{"role": "user", "content": "Hello"}
],
"temperature": 0.7,
"max_tokens": 100
}'
# Works with OpenAI Python SDK
from openai import OpenAI
client = OpenAI(base_url="http://localhost:30000/v1", api_key="EMPTY")
response = client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Hello"}]
)
Supported models
Text models:
- Llama 2, Llama 3, Llama 3.1, Llama 3.2
- Mistral, Mixtral
- Qwen, Qwen2, QwQ
- DeepSeek-V2, DeepSeek-V3
- Gemma, Phi-3
Vision models:
- LLaVA, LLaVA-OneVision
- Phi-3-Vision
- Qwen2-VL
100+ models from HuggingFace
Hardware support
NVIDIA: A100, H100, L4, T4 (CUDA 11.8+) AMD: MI300, MI250 (ROCm 6.0+) Intel: Xeon with GPU (coming soon) Apple: M1/M2/M3 via MPS (experimental)
References
- Structured Generation Guide - JSON schemas, regex, grammars, validation
- RadixAttention Deep Dive - How it works, optimization, benchmarks
- Production Deployment - Multi-GPU, monitoring, autoscaling
Resources
- GitHub: https://github.com/sgl-project/sglang
- Docs: https://sgl-project.github.io/
- Paper: RadixAttention (arXiv:2312.07104)
- Discord: https://discord.gg/sglang
GitHub Repository
Related Skills
speculative-decoding
MetaThis Claude Skill accelerates LLM inference using speculative decoding techniques like Medusa and lookahead decoding, achieving 1.5-3.6× speedups. It's designed for developers optimizing latency in real-time applications or deploying models on limited compute. The implementation covers draft models, tree-based attention, and parallel token generation strategies.
model-pruning
OtherThis skill compresses large language models using pruning techniques like Wanda and SparseGPT to reduce model size by 40-60% and accelerate inference 2-4× with minimal accuracy loss. It enables one-shot compression without retraining and supports various sparsity patterns including N:M for hardware acceleration. Use it when deploying models on constrained hardware or needing faster inference with maintained performance.
tensorrt-llm
OtherTensorRT-LLM is an NVIDIA-optimized library for deploying LLMs on NVIDIA GPUs, delivering up to 100x faster inference than PyTorch. Use it for production serving where you need maximum throughput, low latency, and support for features like quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers and offers key features like tool calling, memory management, and vector store retrieval. Use it for rapid prototyping or deploying production systems like chatbots, autonomous agents, and question-answering tools.
