langchain
About
LangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers and offers key features like tool calling, memory management, and vector store retrieval. Use it for rapid prototyping or deploying production systems like chatbots, autonomous agents, and question-answering tools.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/langchainCopy and paste this command in Claude Code to install this skill
Documentation
LangChain - Build LLM Applications with Agents & RAG
The most popular framework for building LLM-powered applications.
When to use LangChain
Use LangChain when:
- Building agents with tool calling and reasoning (ReAct pattern)
- Implementing RAG (retrieval-augmented generation) pipelines
- Need to swap LLM providers easily (OpenAI, Anthropic, Google)
- Creating chatbots with conversation memory
- Rapid prototyping of LLM applications
- Production deployments with LangSmith observability
Metrics:
- 119,000+ GitHub stars
- 272,000+ repositories use LangChain
- 500+ integrations (models, vector stores, tools)
- 3,800+ contributors
Use alternatives instead:
- LlamaIndex: RAG-focused, better for document Q&A
- LangGraph: Complex stateful workflows, more control
- Haystack: Production search pipelines
- Semantic Kernel: Microsoft ecosystem
Quick start
Installation
# Core library (Python 3.10+)
pip install -U langchain
# With OpenAI
pip install langchain-openai
# With Anthropic
pip install langchain-anthropic
# Common extras
pip install langchain-community # 500+ integrations
pip install langchain-chroma # Vector store
Basic LLM usage
from langchain_anthropic import ChatAnthropic
# Initialize model
llm = ChatAnthropic(model="claude-sonnet-4-5-20250929")
# Simple completion
response = llm.invoke("Explain quantum computing in 2 sentences")
print(response.content)
Create an agent (ReAct pattern)
from langchain.agents import create_agent
from langchain_anthropic import ChatAnthropic
# Define tools
def get_weather(city: str) -> str:
"""Get current weather for a city."""
return f"It's sunny in {city}, 72°F"
def search_web(query: str) -> str:
"""Search the web for information."""
return f"Search results for: {query}"
# Create agent (<10 lines!)
agent = create_agent(
model=ChatAnthropic(model="claude-sonnet-4-5-20250929"),
tools=[get_weather, search_web],
system_prompt="You are a helpful assistant. Use tools when needed."
)
# Run agent
result = agent.invoke({"messages": [{"role": "user", "content": "What's the weather in Paris?"}]})
print(result["messages"][-1].content)
Core concepts
1. Models - LLM abstraction
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
# Swap providers easily
llm = ChatOpenAI(model="gpt-4o")
llm = ChatAnthropic(model="claude-sonnet-4-5-20250929")
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-exp")
# Streaming
for chunk in llm.stream("Write a poem"):
print(chunk.content, end="", flush=True)
2. Chains - Sequential operations
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# Define prompt template
prompt = PromptTemplate(
input_variables=["topic"],
template="Write a 3-sentence summary about {topic}"
)
# Create chain
chain = LLMChain(llm=llm, prompt=prompt)
# Run chain
result = chain.run(topic="machine learning")
3. Agents - Tool-using reasoning
ReAct (Reasoning + Acting) pattern:
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain.tools import Tool
# Define custom tool
calculator = Tool(
name="Calculator",
func=lambda x: eval(x),
description="Useful for math calculations. Input: valid Python expression."
)
# Create agent with tools
agent = create_tool_calling_agent(
llm=llm,
tools=[calculator, search_web],
prompt="Answer questions using available tools"
)
# Create executor
agent_executor = AgentExecutor(agent=agent, tools=[calculator], verbose=True)
# Run with reasoning
result = agent_executor.invoke({"input": "What is 25 * 17 + 142?"})
4. Memory - Conversation history
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
# Add memory to track conversation
memory = ConversationBufferMemory()
conversation = ConversationChain(
llm=llm,
memory=memory,
verbose=True
)
# Multi-turn conversation
conversation.predict(input="Hi, I'm Alice")
conversation.predict(input="What's my name?") # Remembers "Alice"
RAG (Retrieval-Augmented Generation)
Basic RAG pipeline
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain.chains import RetrievalQA
# 1. Load documents
loader = WebBaseLoader("https://docs.python.org/3/tutorial/")
docs = loader.load()
# 2. Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splits = text_splitter.split_documents(docs)
# 3. Create embeddings and vector store
vectorstore = Chroma.from_documents(
documents=splits,
embedding=OpenAIEmbeddings()
)
# 4. Create retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
# 5. Create QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
return_source_documents=True
)
# 6. Query
result = qa_chain({"query": "What are Python decorators?"})
print(result["result"])
print(f"Sources: {result['source_documents']}")
Conversational RAG with memory
from langchain.chains import ConversationalRetrievalChain
# RAG with conversation memory
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
)
# Multi-turn RAG
qa({"question": "What is Python used for?"})
qa({"question": "Can you elaborate on web development?"}) # Remembers context
Advanced agent patterns
Structured output
from langchain_core.pydantic_v1 import BaseModel, Field
# Define schema
class WeatherReport(BaseModel):
city: str = Field(description="City name")
temperature: float = Field(description="Temperature in Fahrenheit")
condition: str = Field(description="Weather condition")
# Get structured response
structured_llm = llm.with_structured_output(WeatherReport)
result = structured_llm.invoke("What's the weather in SF? It's 65F and sunny")
print(result.city, result.temperature, result.condition)
Parallel tool execution
from langchain.agents import create_tool_calling_agent
# Agent automatically parallelizes independent tool calls
agent = create_tool_calling_agent(
llm=llm,
tools=[get_weather, search_web, calculator]
)
# This will call get_weather("Paris") and get_weather("London") in parallel
result = agent.invoke({
"messages": [{"role": "user", "content": "Compare weather in Paris and London"}]
})
Streaming agent execution
# Stream agent steps
for step in agent_executor.stream({"input": "Research AI trends"}):
if "actions" in step:
print(f"Tool: {step['actions'][0].tool}")
if "output" in step:
print(f"Output: {step['output']}")
Common patterns
Multi-document QA
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
# Load multiple documents
docs = [
loader.load("https://docs.python.org"),
loader.load("https://docs.numpy.org")
]
# QA with source citations
chain = load_qa_with_sources_chain(llm, chain_type="stuff")
result = chain({"input_documents": docs, "question": "How to use numpy arrays?"})
print(result["output_text"]) # Includes source citations
Custom tools with error handling
from langchain.tools import tool
@tool
def risky_operation(query: str) -> str:
"""Perform a risky operation that might fail."""
try:
# Your operation here
result = perform_operation(query)
return f"Success: {result}"
except Exception as e:
return f"Error: {str(e)}"
# Agent handles errors gracefully
agent = create_agent(model=llm, tools=[risky_operation])
LangSmith observability
import os
# Enable tracing
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "your-api-key"
os.environ["LANGCHAIN_PROJECT"] = "my-project"
# All chains/agents automatically traced
agent = create_agent(model=llm, tools=[calculator])
result = agent.invoke({"input": "Calculate 123 * 456"})
# View traces at smith.langchain.com
Vector stores
Chroma (local)
from langchain_chroma import Chroma
vectorstore = Chroma.from_documents(
documents=docs,
embedding=OpenAIEmbeddings(),
persist_directory="./chroma_db"
)
Pinecone (cloud)
from langchain_pinecone import PineconeVectorStore
vectorstore = PineconeVectorStore.from_documents(
documents=docs,
embedding=OpenAIEmbeddings(),
index_name="my-index"
)
FAISS (similarity search)
from langchain_community.vectorstores import FAISS
vectorstore = FAISS.from_documents(docs, OpenAIEmbeddings())
vectorstore.save_local("faiss_index")
# Load later
vectorstore = FAISS.load_local("faiss_index", OpenAIEmbeddings())
Document loaders
# Web pages
from langchain_community.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://example.com")
# PDFs
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("paper.pdf")
# GitHub
from langchain_community.document_loaders import GithubFileLoader
loader = GithubFileLoader(repo="user/repo", file_filter=lambda x: x.endswith(".py"))
# CSV
from langchain_community.document_loaders import CSVLoader
loader = CSVLoader("data.csv")
Text splitters
# Recursive (recommended for general text)
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
separators=["\n\n", "\n", " ", ""]
)
# Code-aware
from langchain.text_splitter import PythonCodeTextSplitter
splitter = PythonCodeTextSplitter(chunk_size=500)
# Semantic (by meaning)
from langchain_experimental.text_splitter import SemanticChunker
splitter = SemanticChunker(OpenAIEmbeddings())
Best practices
- Start simple - Use
create_agent()for most cases - Enable streaming - Better UX for long responses
- Add error handling - Tools can fail, handle gracefully
- Use LangSmith - Essential for debugging agents
- Optimize chunk size - 500-1000 chars for RAG
- Version prompts - Track changes in production
- Cache embeddings - Expensive, cache when possible
- Monitor costs - Track token usage with LangSmith
Performance benchmarks
| Operation | Latency | Notes |
|---|---|---|
| Simple LLM call | ~1-2s | Depends on provider |
| Agent with 1 tool | ~3-5s | ReAct reasoning overhead |
| RAG retrieval | ~0.5-1s | Vector search + LLM |
| Embedding 1000 docs | ~10-30s | Depends on model |
LangChain vs LangGraph
| Feature | LangChain | LangGraph |
|---|---|---|
| Best for | Quick agents, RAG | Complex workflows |
| Abstraction level | High | Low |
| Code to start | <10 lines | ~30 lines |
| Control | Simple | Full control |
| Stateful workflows | Limited | Native |
| Cyclic graphs | No | Yes |
| Human-in-loop | Basic | Advanced |
Use LangGraph when:
- Need stateful workflows with cycles
- Require fine-grained control
- Building multi-agent systems
- Production apps with complex logic
References
- Agents Guide - ReAct, tool calling, streaming
- RAG Guide - Document loaders, retrievers, QA chains
- Integration Guide - Vector stores, LangSmith, deployment
Resources
- GitHub: https://github.com/langchain-ai/langchain ⭐ 119,000+
- Docs: https://docs.langchain.com
- API Reference: https://reference.langchain.com/python
- LangSmith: https://smith.langchain.com (observability)
- Version: 0.3+ (stable)
- License: MIT
GitHub Repository
Related Skills
sglang
MetaSGLang is a high-performance LLM serving framework that enables fast structured generation with JSON/regex outputs and constrained decoding. It's ideal for agentic workflows with tool calls and multi-turn conversations, offering significantly faster inference through RadixAttention prefix caching. Use it when you need production-scale performance with shared context across requests.
training-llms-megatron
DesignThis skill trains massive language models (2B-462B parameters) using NVIDIA's Megatron-Core framework for maximum GPU efficiency. Use it when training models over 1B parameters, requiring advanced parallelism strategies like tensor or pipeline, or needing production-ready performance. It's a proven framework used for models like Nemotron and LLaMA.
pinecone
DevelopmentPinecone is a fully managed vector database for production AI applications, featuring auto-scaling, low latency (<100ms p95), and hybrid search. It's ideal for developers who need a serverless solution for production RAG, semantic search, or recommendation systems without managing infrastructure. Use it when you require metadata filtering, namespaces, and scaling to billions of vectors.
tensorrt-llm
OtherTensorRT-LLM is an NVIDIA-optimized library for deploying LLMs on NVIDIA GPUs, delivering up to 100x faster inference than PyTorch. Use it for production serving where you need maximum throughput, low latency, and support for features like quantization (FP8/INT4), in-flight batching, and multi-GPU scaling.
