llava
About
LLaVA is a vision-language model that enables conversational image analysis through visual question answering and multi-turn image chats. It combines CLIP vision encoding with language models like Vicuna to understand and discuss visual content. Use it for building vision-language chatbots or any task requiring interactive image understanding.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/llavaCopy and paste this command in Claude Code to install this skill
Documentation
LLaVA - Large Language and Vision Assistant
Open-source vision-language model for conversational image understanding.
When to use LLaVA
Use when:
- Building vision-language chatbots
- Visual question answering (VQA)
- Image description and captioning
- Multi-turn image conversations
- Visual instruction following
- Document understanding with images
Metrics:
- 23,000+ GitHub stars
- GPT-4V level capabilities (targeted)
- Apache 2.0 License
- Multiple model sizes (7B-34B params)
Use alternatives instead:
- GPT-4V: Highest quality, API-based
- CLIP: Simple zero-shot classification
- BLIP-2: Better for captioning only
- Flamingo: Research, not open-source
Quick start
Installation
# Clone repository
git clone https://github.com/haotian-liu/LLaVA
cd LLaVA
# Install
pip install -e .
Basic usage
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
from llava.conversation import conv_templates
from PIL import Image
import torch
# Load model
model_path = "liuhaotian/llava-v1.5-7b"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
# Load image
image = Image.open("image.jpg")
image_tensor = process_images([image], image_processor, model.config)
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
# Create conversation
conv = conv_templates["llava_v1"].copy()
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
# Generate response
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
do_sample=True,
temperature=0.2,
max_new_tokens=512
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
print(response)
Available models
| Model | Parameters | VRAM | Quality |
|---|---|---|---|
| LLaVA-v1.5-7B | 7B | ~14 GB | Good |
| LLaVA-v1.5-13B | 13B | ~28 GB | Better |
| LLaVA-v1.6-34B | 34B | ~70 GB | Best |
# Load different models
model_7b = "liuhaotian/llava-v1.5-7b"
model_13b = "liuhaotian/llava-v1.5-13b"
model_34b = "liuhaotian/llava-v1.6-34b"
# 4-bit quantization for lower VRAM
load_4bit = True # Reduces VRAM by ~4×
CLI usage
# Single image query
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file image.jpg \
--query "What is in this image?"
# Multi-turn conversation
python -m llava.serve.cli \
--model-path liuhaotian/llava-v1.5-7b \
--image-file image.jpg
# Then type questions interactively
Web UI (Gradio)
# Launch Gradio interface
python -m llava.serve.gradio_web_server \
--model-path liuhaotian/llava-v1.5-7b \
--load-4bit # Optional: reduce VRAM
# Access at http://localhost:7860
Multi-turn conversations
# Initialize conversation
conv = conv_templates["llava_v1"].copy()
# Turn 1
conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN + "\nWhat is in this image?")
conv.append_message(conv.roles[1], None)
response1 = generate(conv, model, image) # "A dog playing in a park"
# Turn 2
conv.messages[-1][1] = response1 # Add previous response
conv.append_message(conv.roles[0], "What breed is the dog?")
conv.append_message(conv.roles[1], None)
response2 = generate(conv, model, image) # "Golden Retriever"
# Turn 3
conv.messages[-1][1] = response2
conv.append_message(conv.roles[0], "What time of day is it?")
conv.append_message(conv.roles[1], None)
response3 = generate(conv, model, image)
Common tasks
Image captioning
question = "Describe this image in detail."
response = ask(model, image, question)
Visual question answering
question = "How many people are in the image?"
response = ask(model, image, question)
Object detection (textual)
question = "List all the objects you can see in this image."
response = ask(model, image, question)
Scene understanding
question = "What is happening in this scene?"
response = ask(model, image, question)
Document understanding
question = "What is the main topic of this document?"
response = ask(model, document_image, question)
Training custom model
# Stage 1: Feature alignment (558K image-caption pairs)
bash scripts/v1_5/pretrain.sh
# Stage 2: Visual instruction tuning (150K instruction data)
bash scripts/v1_5/finetune.sh
Quantization (reduce VRAM)
# 4-bit quantization
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path="liuhaotian/llava-v1.5-13b",
model_base=None,
model_name=get_model_name_from_path("liuhaotian/llava-v1.5-13b"),
load_4bit=True # Reduces VRAM ~4×
)
# 8-bit quantization
load_8bit=True # Reduces VRAM ~2×
Best practices
- Start with 7B model - Good quality, manageable VRAM
- Use 4-bit quantization - Reduces VRAM significantly
- GPU required - CPU inference extremely slow
- Clear prompts - Specific questions get better answers
- Multi-turn conversations - Maintain conversation context
- Temperature 0.2-0.7 - Balance creativity/consistency
- max_new_tokens 512-1024 - For detailed responses
- Batch processing - Process multiple images sequentially
Performance
| Model | VRAM (FP16) | VRAM (4-bit) | Speed (tokens/s) |
|---|---|---|---|
| 7B | ~14 GB | ~4 GB | ~20 |
| 13B | ~28 GB | ~8 GB | ~12 |
| 34B | ~70 GB | ~18 GB | ~5 |
On A100 GPU
Benchmarks
LLaVA achieves competitive scores on:
- VQAv2: 78.5%
- GQA: 62.0%
- MM-Vet: 35.4%
- MMBench: 64.3%
Limitations
- Hallucinations - May describe things not in image
- Spatial reasoning - Struggles with precise locations
- Small text - Difficulty reading fine print
- Object counting - Imprecise for many objects
- VRAM requirements - Need powerful GPU
- Inference speed - Slower than CLIP
Integration with frameworks
LangChain
from langchain.llms.base import LLM
class LLaVALLM(LLM):
def _call(self, prompt, stop=None):
# Custom LLaVA inference
return response
llm = LLaVALLM()
Gradio App
import gradio as gr
def chat(image, text, history):
response = ask_llava(model, image, text)
return response
demo = gr.ChatInterface(
chat,
additional_inputs=[gr.Image(type="pil")],
title="LLaVA Chat"
)
demo.launch()
Resources
- GitHub: https://github.com/haotian-liu/LLaVA ⭐ 23,000+
- Paper: https://arxiv.org/abs/2304.08485
- Demo: https://llava.hliu.cc
- Models: https://huggingface.co/liuhaotian
- License: Apache 2.0
GitHub Repository
Related Skills
axolotl
DesignThis skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.
nemo-curator
Developmentnemo-curator is a GPU-accelerated toolkit for curating high-quality, multi-modal datasets for LLM training. It provides fast operations like fuzzy deduplication, quality filtering, and PII redaction, scaling across GPUs with RAPIDS. Use it to efficiently clean web-scraped data or deduplicate large corpora.
llama-factory
DesignThis skill provides expert guidance for fine-tuning LLMs using the LLaMA-Factory framework, including its no-code WebUI and support for 100+ models with QLoRA quantization. Use it when implementing, debugging, or learning best practices for LLaMA-Factory solutions in your development workflow.
whisper
OtherWhisper is OpenAI's multilingual speech recognition model for transcribing and translating audio across 99 languages. It handles tasks like podcast transcription, meeting notes, and processing noisy or multilingual audio. Developers should use it for robust, production-ready speech-to-text capabilities.
