llamaindex
About
LlamaIndex is a data framework for building RAG applications, specializing in ingesting documents from numerous sources and indexing them for querying. Its key features include vector indices, query engines, and agent tools to enable document Q&A, chatbots, and knowledge retrieval. Use it when you need to connect LLMs to your private or structured data.
Quick Install
Claude Code
Recommended/plugin add https://github.com/davila7/claude-code-templatesgit clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/llamaindexCopy and paste this command in Claude Code to install this skill
Documentation
LlamaIndex - Data Framework for LLM Applications
The leading framework for connecting LLMs with your data.
When to use LlamaIndex
Use LlamaIndex when:
- Building RAG (retrieval-augmented generation) applications
- Need document question-answering over private data
- Ingesting data from multiple sources (300+ connectors)
- Creating knowledge bases for LLMs
- Building chatbots with enterprise data
- Need structured data extraction from documents
Metrics:
- 45,100+ GitHub stars
- 23,000+ repositories use LlamaIndex
- 300+ data connectors (LlamaHub)
- 1,715+ contributors
- v0.14.7 (stable)
Use alternatives instead:
- LangChain: More general-purpose, better for agents
- Haystack: Production search pipelines
- txtai: Lightweight semantic search
- Chroma: Just need vector storage
Quick start
Installation
# Starter package (recommended)
pip install llama-index
# Or minimal core + specific integrations
pip install llama-index-core
pip install llama-index-llms-openai
pip install llama-index-embeddings-openai
5-line RAG example
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
# Load documents
documents = SimpleDirectoryReader("data").load_data()
# Create index
index = VectorStoreIndex.from_documents(documents)
# Query
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)
Core concepts
1. Data connectors - Load documents
from llama_index.core import SimpleDirectoryReader, Document
from llama_index.readers.web import SimpleWebPageReader
from llama_index.readers.github import GithubRepositoryReader
# Directory of files
documents = SimpleDirectoryReader("./data").load_data()
# Web pages
reader = SimpleWebPageReader()
documents = reader.load_data(["https://example.com"])
# GitHub repository
reader = GithubRepositoryReader(owner="user", repo="repo")
documents = reader.load_data(branch="main")
# Manual document creation
doc = Document(
text="This is the document content",
metadata={"source": "manual", "date": "2025-01-01"}
)
2. Indices - Structure data
from llama_index.core import VectorStoreIndex, ListIndex, TreeIndex
# Vector index (most common - semantic search)
vector_index = VectorStoreIndex.from_documents(documents)
# List index (sequential scan)
list_index = ListIndex.from_documents(documents)
# Tree index (hierarchical summary)
tree_index = TreeIndex.from_documents(documents)
# Save index
index.storage_context.persist(persist_dir="./storage")
# Load index
from llama_index.core import load_index_from_storage, StorageContext
storage_context = StorageContext.from_defaults(persist_dir="./storage")
index = load_index_from_storage(storage_context)
3. Query engines - Ask questions
# Basic query
query_engine = index.as_query_engine()
response = query_engine.query("What is the main topic?")
print(response)
# Streaming response
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query("Explain quantum computing")
for text in response.response_gen:
print(text, end="", flush=True)
# Custom configuration
query_engine = index.as_query_engine(
similarity_top_k=3, # Return top 3 chunks
response_mode="compact", # Or "tree_summarize", "simple_summarize"
verbose=True
)
4. Retrievers - Find relevant chunks
# Vector retriever
retriever = index.as_retriever(similarity_top_k=5)
nodes = retriever.retrieve("machine learning")
# With filtering
retriever = index.as_retriever(
similarity_top_k=3,
filters={"metadata.category": "tutorial"}
)
# Custom retriever
from llama_index.core.retrievers import BaseRetriever
class CustomRetriever(BaseRetriever):
def _retrieve(self, query_bundle):
# Your custom retrieval logic
return nodes
Agents with tools
Basic agent
from llama_index.core.agent import FunctionAgent
from llama_index.llms.openai import OpenAI
# Define tools
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
# Create agent
llm = OpenAI(model="gpt-4o")
agent = FunctionAgent.from_tools(
tools=[multiply, add],
llm=llm,
verbose=True
)
# Use agent
response = agent.chat("What is 25 * 17 + 142?")
print(response)
RAG agent (document search + tools)
from llama_index.core.tools import QueryEngineTool
# Create index as before
index = VectorStoreIndex.from_documents(documents)
# Wrap query engine as tool
query_tool = QueryEngineTool.from_defaults(
query_engine=index.as_query_engine(),
name="python_docs",
description="Useful for answering questions about Python programming"
)
# Agent with document search + calculator
agent = FunctionAgent.from_tools(
tools=[query_tool, multiply, add],
llm=llm
)
# Agent decides when to search docs vs calculate
response = agent.chat("According to the docs, what is Python used for?")
Advanced RAG patterns
Chat engine (conversational)
from llama_index.core.chat_engine import CondensePlusContextChatEngine
# Chat with memory
chat_engine = index.as_chat_engine(
chat_mode="condense_plus_context", # Or "context", "react"
verbose=True
)
# Multi-turn conversation
response1 = chat_engine.chat("What is Python?")
response2 = chat_engine.chat("Can you give examples?") # Remembers context
response3 = chat_engine.chat("What about web frameworks?")
Metadata filtering
from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter
# Filter by metadata
filters = MetadataFilters(
filters=[
ExactMatchFilter(key="category", value="tutorial"),
ExactMatchFilter(key="difficulty", value="beginner")
]
)
retriever = index.as_retriever(
similarity_top_k=3,
filters=filters
)
query_engine = index.as_query_engine(filters=filters)
Structured output
from pydantic import BaseModel
from llama_index.core.output_parsers import PydanticOutputParser
class Summary(BaseModel):
title: str
main_points: list[str]
conclusion: str
# Get structured response
output_parser = PydanticOutputParser(output_cls=Summary)
query_engine = index.as_query_engine(output_parser=output_parser)
response = query_engine.query("Summarize the document")
summary = response # Pydantic model
print(summary.title, summary.main_points)
Data ingestion patterns
Multiple file types
# Load all supported formats
documents = SimpleDirectoryReader(
"./data",
recursive=True,
required_exts=[".pdf", ".docx", ".txt", ".md"]
).load_data()
Web scraping
from llama_index.readers.web import BeautifulSoupWebReader
reader = BeautifulSoupWebReader()
documents = reader.load_data(urls=[
"https://docs.python.org/3/tutorial/",
"https://docs.python.org/3/library/"
])
Database
from llama_index.readers.database import DatabaseReader
reader = DatabaseReader(
sql_database_uri="postgresql://user:pass@localhost/db"
)
documents = reader.load_data(query="SELECT * FROM articles")
API endpoints
from llama_index.readers.json import JSONReader
reader = JSONReader()
documents = reader.load_data("https://api.example.com/data.json")
Vector store integrations
Chroma (local)
from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb
# Initialize Chroma
db = chromadb.PersistentClient(path="./chroma_db")
collection = db.get_or_create_collection("my_collection")
# Create vector store
vector_store = ChromaVectorStore(chroma_collection=collection)
# Use in index
from llama_index.core import StorageContext
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
Pinecone (cloud)
from llama_index.vector_stores.pinecone import PineconeVectorStore
import pinecone
# Initialize Pinecone
pinecone.init(api_key="your-key", environment="us-west1-gcp")
pinecone_index = pinecone.Index("my-index")
# Create vector store
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
FAISS (fast)
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
# Create FAISS index
d = 1536 # Dimension of embeddings
faiss_index = faiss.IndexFlatL2(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
Customization
Custom LLM
from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings
# Set global LLM
Settings.llm = Anthropic(model="claude-sonnet-4-5-20250929")
# Now all queries use Anthropic
query_engine = index.as_query_engine()
Custom embeddings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# Use HuggingFace embeddings
Settings.embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2"
)
index = VectorStoreIndex.from_documents(documents)
Custom prompt templates
from llama_index.core import PromptTemplate
qa_prompt = PromptTemplate(
"Context: {context_str}\n"
"Question: {query_str}\n"
"Answer the question based only on the context. "
"If the answer is not in the context, say 'I don't know'.\n"
"Answer: "
)
query_engine = index.as_query_engine(text_qa_template=qa_prompt)
Multi-modal RAG
Image + text
from llama_index.core import SimpleDirectoryReader
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
# Load images and documents
documents = SimpleDirectoryReader(
"./data",
required_exts=[".jpg", ".png", ".pdf"]
).load_data()
# Multi-modal index
index = VectorStoreIndex.from_documents(documents)
# Query with multi-modal LLM
multi_modal_llm = OpenAIMultiModal(model="gpt-4o")
query_engine = index.as_query_engine(llm=multi_modal_llm)
response = query_engine.query("What is in the diagram on page 3?")
Evaluation
Response quality
from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator
# Evaluate relevance
relevancy = RelevancyEvaluator()
result = relevancy.evaluate_response(
query="What is Python?",
response=response
)
print(f"Relevancy: {result.passing}")
# Evaluate faithfulness (no hallucination)
faithfulness = FaithfulnessEvaluator()
result = faithfulness.evaluate_response(
query="What is Python?",
response=response
)
print(f"Faithfulness: {result.passing}")
Best practices
- Use vector indices for most cases - Best performance
- Save indices to disk - Avoid re-indexing
- Chunk documents properly - 512-1024 tokens optimal
- Add metadata - Enables filtering and tracking
- Use streaming - Better UX for long responses
- Enable verbose during dev - See retrieval process
- Evaluate responses - Check relevance and faithfulness
- Use chat engine for conversations - Built-in memory
- Persist storage - Don't lose your index
- Monitor costs - Track embedding and LLM usage
Common patterns
Document Q&A system
# Complete RAG pipeline
documents = SimpleDirectoryReader("docs").load_data()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir="./storage")
# Query
query_engine = index.as_query_engine(
similarity_top_k=3,
response_mode="compact",
verbose=True
)
response = query_engine.query("What is the main topic?")
print(response)
print(f"Sources: {[node.metadata['file_name'] for node in response.source_nodes]}")
Chatbot with memory
# Conversational interface
chat_engine = index.as_chat_engine(
chat_mode="condense_plus_context",
verbose=True
)
# Multi-turn chat
while True:
user_input = input("You: ")
if user_input.lower() == "quit":
break
response = chat_engine.chat(user_input)
print(f"Bot: {response}")
Performance benchmarks
| Operation | Latency | Notes |
|---|---|---|
| Index 100 docs | ~10-30s | One-time, can persist |
| Query (vector) | ~0.5-2s | Retrieval + LLM |
| Streaming query | ~0.5s first token | Better UX |
| Agent with tools | ~3-8s | Multiple tool calls |
LlamaIndex vs LangChain
| Feature | LlamaIndex | LangChain |
|---|---|---|
| Best for | RAG, document Q&A | Agents, general LLM apps |
| Data connectors | 300+ (LlamaHub) | 100+ |
| RAG focus | Core feature | One of many |
| Learning curve | Easier for RAG | Steeper |
| Customization | High | Very high |
| Documentation | Excellent | Good |
Use LlamaIndex when:
- Your primary use case is RAG
- Need many data connectors
- Want simpler API for document Q&A
- Building knowledge retrieval system
Use LangChain when:
- Building complex agents
- Need more general-purpose tools
- Want more flexibility
- Complex multi-step workflows
References
- Query Engines Guide - Query modes, customization, streaming
- Agents Guide - Tool creation, RAG agents, multi-step reasoning
- Data Connectors Guide - 300+ connectors, custom loaders
Resources
- GitHub: https://github.com/run-llama/llama_index ⭐ 45,100+
- Docs: https://developers.llamaindex.ai/python/framework/
- LlamaHub: https://llamahub.ai (data connectors)
- LlamaCloud: https://cloud.llamaindex.ai (enterprise)
- Discord: https://discord.gg/dGcwcsnxhU
- Version: 0.14.7+
- License: MIT
GitHub Repository
Related Skills
axolotl
DesignThis skill provides expert guidance for fine-tuning LLMs using the Axolotl framework, helping developers configure YAML files and implement advanced techniques like LoRA/QLoRA and DPO/KTO. Use it when working with Axolotl features, debugging code, or learning best practices for fine-tuning across 100+ models. It offers comprehensive assistance including multimodal support and performance optimization.
sglang
MetaSGLang is a high-performance LLM serving framework that enables fast structured generation with JSON/regex outputs and constrained decoding. It's ideal for agentic workflows with tool calls and multi-turn conversations, offering significantly faster inference through RadixAttention prefix caching. Use it when you need production-scale performance with shared context across requests.
langchain
MetaLangChain is a framework for building LLM applications using agents, chains, and RAG pipelines. It supports multiple LLM providers and offers key features like tool calling, memory management, and vector store retrieval. Use it for rapid prototyping or deploying production systems like chatbots, autonomous agents, and question-answering tools.
pinecone
DevelopmentPinecone is a fully managed vector database for production AI applications, featuring auto-scaling, low latency (<100ms p95), and hybrid search. It's ideal for developers who need a serverless solution for production RAG, semantic search, or recommendation systems without managing infrastructure. Use it when you require metadata filtering, namespaces, and scaling to billions of vectors.
