analyzing-capacity-planning
关于
This skill analyzes infrastructure capacity by assessing current utilization and forecasting growth trends to recommend scaling strategies. Use it when planning for growth, forecasting needs, or discussing metrics like CPU, memory, or bandwidth. It's designed for proactive infrastructure planning to prevent performance bottlenecks.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/analyzing-capacity-planning在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill empowers Claude to analyze current resource utilization, predict future capacity needs, and provide actionable recommendations for scaling infrastructure. It generates insights into growth trends, identifies potential bottlenecks, and estimates costs associated with capacity expansion.
How It Works
- Analyze Utilization: The plugin analyzes current CPU, memory, database storage, network bandwidth, and request rate utilization.
- Forecast Growth: Based on historical data, the plugin forecasts future growth trends for key capacity metrics.
- Generate Recommendations: The plugin recommends scaling strategies, including vertical and horizontal scaling options, and estimates associated costs.
When to Use This Skill
This skill activates when you need to:
- Analyze current infrastructure capacity and identify potential bottlenecks.
- Forecast future resource requirements based on projected growth.
- Develop a capacity roadmap to ensure optimal performance and availability.
Examples
Example 1: Planning for Database Growth
User request: "Analyze database capacity and plan for future growth."
The skill will:
- Analyze current database storage utilization and growth rate.
- Forecast future storage requirements based on historical trends.
- Recommend scaling options, such as adding storage or migrating to a larger instance.
Example 2: Identifying CPU Bottlenecks
User request: "Analyze CPU utilization and identify potential bottlenecks."
The skill will:
- Analyze CPU utilization trends across different servers and applications.
- Identify periods of high CPU usage and potential bottlenecks.
- Recommend scaling options, such as adding more CPU cores or optimizing application code.
Best Practices
- Data Accuracy: Ensure that the data used for analysis is accurate and up-to-date.
- Metric Selection: Choose the right capacity metrics to monitor based on your specific application requirements.
- Regular Monitoring: Regularly monitor capacity metrics to identify potential issues before they impact performance.
Integration
This skill can be integrated with other monitoring and alerting tools to provide proactive capacity management. It can also be used in conjunction with infrastructure-as-code tools to automate scaling operations.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
