troubleshooting-assistant
关于
This skill diagnoses and resolves common technical issues in Claude Patent Creator, including MCP server failures, GPU detection, and authentication errors. It provides a structured troubleshooting methodology for developers facing errors, performance problems, or system failures. Use it when you encounter operational issues, unexpected behavior, or need to isolate failing components.
快速安装
Claude Code
推荐/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creatorgit clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/troubleshooting-assistant在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Troubleshooting Assistant Skill
Expert diagnostic system for identifying and resolving Claude Patent Creator issues.
When to Use
System not working, error messages, slow performance, MCP server not loading, search returns no results/errors, GPU not detected, BigQuery auth fails, index build fails, tests failing, unexpected behavior.
Troubleshooting Methodology
Problem Reported
|
[1] Gather Information (errors, recent changes, system state)
|
[2] Reproduce Issue (minimal test case, consistent?)
|
[3] Isolate Component (which part failing? dependencies?)
|
[4] Diagnose Root Cause (check logs, test components, verify config)
|
[5] Apply Fix (targeted solution, verify works)
|
[6] Prevent Recurrence (document, add monitoring, update checks)
Common Issues & Quick Fixes
| Issue | Quick Fix |
|---|---|
| MCP server not loading | claude mcp list -> Re-register if missing |
| GPU not detected | Reinstall PyTorch with CUDA |
| BigQuery auth fails | gcloud auth application-default login |
| Index not found | patent-creator rebuild-index |
| Import errors | Activate venv: venv\Scripts\activate |
| Slow searches | Check GPU usage, reduce top_k, disable HyDE |
| Irrelevant results | Rephrase query with MPEP terminology |
Detailed Issue Guides
MCP Server Issues
Problems: Server not loading, tools don't work/return errors
- 5-step diagnostic workflow
- Path verification and correction
- Dependency troubleshooting
- Server restart procedures
GPU & BigQuery Issues
Problems: GPU not detected, slow performance, BigQuery auth fails, query timeouts
- CUDA detection and PyTorch reinstallation
- Performance diagnostics and optimization
- BigQuery authentication and permissions
- Timeout configuration
Index, Dependencies & Configuration
Problems: Index not found, build fails, ModuleNotFoundError, import errors, env vars not loading, irrelevant search results
- Index rebuild procedures
- OOM (Out of Memory) solutions
- Virtual environment activation
- Pydantic validation errors
- Configuration troubleshooting
- Search quality tuning
Diagnostic Tools
Health Check Suite
# Full system health
patent-creator health
# Individual components
python scripts/test_gpu.py
python scripts/test_bigquery.py
python scripts/test_analyzers.py
python scripts/test_install.py
Component Isolation
# Test MPEP search
python -c "from mcp_server.mpep_search import MPEPIndex; \
index = MPEPIndex(); \
print('OK' if index.search('test', top_k=1) else 'FAILED')"
# Test BigQuery
python -c "from mcp_server.bigquery_search import BigQueryPatentSearch; \
search = BigQueryPatentSearch(); \
print('OK' if search.search_patents('neural network', limit=1) else 'FAILED')"
# Test analyzers
python -c "from mcp_server.claims_analyzer import ClaimsAnalyzer; \
analyzer = ClaimsAnalyzer(); \
print('OK' if analyzer.analyze('1. A test claim.') else 'FAILED')"
- Log analysis (debug mode)
- MCP communication debugging
- Performance profiling
- Memory profiling
- Issue escalation procedures
Best Practices for Prevention
- Regular health checks (weekly
patent-creator health) - Monitor logs for warnings/errors
- Keep dependencies updated (test before deploying)
- Backup before changes (especially index rebuilds)
- Document modifications
- Test after changes (run test suite)
- Version control (use git)
- Environment consistency (same Python/CUDA versions)
Quick Reference
Most Common Errors
| Error | Category | Solution |
|---|---|---|
| "Tool not found" | MCP | claude mcp list |
| "ModuleNotFoundError" | Dependencies | Activate venv, reinstall |
| "CUDA not available" | GPU | Reinstall PyTorch with CUDA |
| "Permission denied" (BigQuery) | Auth | gcloud auth application-default login |
| "Index not found" | Index | patent-creator rebuild-index |
| "Out of memory" | Index Build | Reduce batch size |
| "Validation error" | Input | Check Pydantic model parameters |
Diagnostic Commands
# System health
patent-creator health
# Test components
python scripts/test_gpu.py
python scripts/test_bigquery.py
python scripts/test_install.py
# Check registration
claude mcp list
# Check paths
patent-creator verify-config
# Enable debug logging
export PATENT_LOG_LEVEL=DEBUG
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
