gh-actions-validator
关于
This Claude skill validates and enforces GitHub Actions best practices for Vertex AI and Google Cloud deployments. It specializes in secure CI/CD automation, particularly using Workload Identity Federation (WIF) instead of service account keys. Use it when creating, deploying, or validating GCP workflows with triggers like "setup wif" or "deploy vertex ai".
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/gh-actions-validator在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
What This Skill Does
Expert validator and enforcer of GitHub Actions best practices specifically for Vertex AI Agent Engine and Google Cloud deployments. Ensures secure, production-ready CI/CD pipelines using Workload Identity Federation (WIF) instead of service account JSON keys.
When This Skill Activates
Trigger Phrases
- "Create GitHub Actions workflow for Vertex AI"
- "Deploy agent to Vertex AI Engine"
- "Set up Workload Identity Federation"
- "Validate GitHub Actions security for GCP"
- "GitHub Actions deployment pipeline"
- "WIF configuration for Google Cloud"
- "Automate Vertex AI deployment"
- "GitHub Actions best practices GCP"
Use Cases
- Creating CI/CD pipelines for Vertex AI Agent Engine deployments
- Migrating from JSON service account keys to WIF
- Enforcing security best practices in GitHub Actions
- Validating post-deployment of Vertex AI agents
- Setting up automated monitoring for deployed agents
- Implementing OIDC-based authentication to Google Cloud
Validation Rules Enforced
1. Workload Identity Federation (WIF) Mandatory
❌ NEVER use JSON service account keys:
# ❌ FORBIDDEN - JSON keys are insecure
- name: Authenticate (INSECURE)
uses: google-github-actions/auth@v2
with:
credentials_json: ${{ secrets.GCP_SA_KEY }} # ❌ NEVER DO THIS
✅ ALWAYS use WIF:
# ✅ REQUIRED - WIF with OIDC
permissions:
contents: read
id-token: write # ✅ REQUIRED for WIF
- name: Authenticate (SECURE)
uses: google-github-actions/auth@v2
with:
workload_identity_provider: ${{ secrets.WIF_PROVIDER }}
service_account: ${{ secrets.WIF_SERVICE_ACCOUNT }}
2. OIDC Permissions Required
❌ Missing id-token permission:
# ❌ FAILS - Missing id-token: write
permissions:
contents: read
✅ Correct permissions:
# ✅ REQUIRED for WIF OIDC
permissions:
contents: read
id-token: write # MUST be present
3. IAM Least Privilege
❌ Overly permissive roles:
# ❌ FORBIDDEN - Too many permissions
roles:
- roles/owner
- roles/editor
✅ Least privilege:
# ✅ REQUIRED - Minimal permissions
roles:
- roles/run.admin
- roles/iam.serviceAccountUser
- roles/aiplatform.user
4. Vertex AI Agent Engine Deployment Validation
Post-Deployment Checks (MANDATORY):
- name: Validate Agent Deployment
run: |
python scripts/validate-deployment.py \
--project-id=${{ secrets.GCP_PROJECT_ID }} \
--agent-id=production-agent
# Validation checklist:
# ✅ Agent state is RUNNING
# ✅ Code Execution Sandbox enabled (14-day TTL)
# ✅ Memory Bank configured
# ✅ A2A Protocol compliant (AgentCard accessible)
# ✅ Model Armor enabled (prompt injection protection)
# ✅ VPC Service Controls configured
# ✅ Service account has minimal IAM permissions
# ✅ Monitoring dashboards created
# ✅ Alerting policies configured
5. Security Scanning (REQUIRED)
# ✅ REQUIRED - Security validation before deployment
- name: Scan for secrets
uses: trufflesecurity/trufflehog@main
- name: Vulnerability scanning
uses: aquasecurity/trivy-action@master
- name: Validate no service account keys
run: |
if find . -name "*service-account*.json"; then
echo "❌ Service account JSON keys detected"
exit 1
fi
6. Agent Configuration Validation
Before Deployment (MANDATORY):
def validate_agent_config(agent_config: dict) -> bool:
"""
Validate agent configuration before deployment.
"""
# ✅ Code Execution TTL must be 7-14 days
ttl = agent_config.get("code_execution_config", {}).get("state_ttl_days")
assert 7 <= ttl <= 14, "❌ State TTL must be 7-14 days"
# ✅ Memory Bank must be enabled for stateful agents
memory_enabled = agent_config.get("memory_bank_config", {}).get("enabled")
assert memory_enabled, "❌ Memory Bank should be enabled"
# ✅ Model Armor must be enabled (prompt injection protection)
model_armor = agent_config.get("model_armor", {}).get("enabled")
assert model_armor, "❌ Model Armor must be enabled"
# ✅ VPC configuration required for enterprise
vpc_config = agent_config.get("vpc_config")
assert vpc_config, "❌ VPC configuration missing"
# ✅ Auto-scaling configured
auto_scaling = agent_config.get("auto_scaling")
assert auto_scaling, "❌ Auto-scaling not configured"
assert auto_scaling.get("min_instances") >= 1, "❌ min_instances < 1"
return True
Workflow Templates
Template 1: Vertex AI Agent Engine Deployment
name: Deploy Vertex AI Agent
on:
push:
branches: [main]
paths:
- 'agent/**'
workflow_dispatch:
permissions:
contents: read
id-token: write
env:
AGENT_ID: 'production-adk-agent'
REGION: 'us-central1'
jobs:
validate-and-deploy:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Authenticate to GCP (WIF)
uses: google-github-actions/auth@v2
with:
workload_identity_provider: ${{ secrets.WIF_PROVIDER }}
service_account: ${{ secrets.WIF_SERVICE_ACCOUNT }}
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
cache: 'pip'
- name: Install dependencies
run: |
pip install -r requirements.txt
- name: Validate Agent Configuration
run: |
python scripts/validate-agent-config.py
- name: Deploy to Vertex AI Engine
run: |
python scripts/deploy-agent.py \
--project-id=${{ secrets.GCP_PROJECT_ID }} \
--location=${{ env.REGION }} \
--agent-id=${{ env.AGENT_ID }}
- name: Post-Deployment Validation
run: |
python scripts/validate-deployment.py \
--project-id=${{ secrets.GCP_PROJECT_ID }} \
--agent-id=${{ env.AGENT_ID }}
- name: Setup Monitoring
run: |
python scripts/setup-monitoring.py \
--project-id=${{ secrets.GCP_PROJECT_ID }} \
--agent-id=${{ env.AGENT_ID }}
- name: Test Agent Endpoint
run: |
python scripts/test-agent.py \
--agent-id=${{ env.AGENT_ID }}
Template 2: WIF Setup (One-Time Infrastructure)
name: Setup Workload Identity Federation
on:
workflow_dispatch:
inputs:
github_repo:
description: 'GitHub repository (owner/repo)'
required: true
permissions:
contents: read
jobs:
setup-wif:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Authenticate with JSON key (one-time only)
uses: google-github-actions/auth@v2
with:
credentials_json: ${{ secrets.GCP_SETUP_KEY }}
- name: Run WIF setup script
run: |
bash scripts/setup-wif.sh \
--project-id=${{ secrets.GCP_PROJECT_ID }} \
--github-repo=${{ github.event.inputs.github_repo }}
- name: Output WIF configuration
run: |
cat wif-config.txt
Template 3: Security Validation (Pre-Deployment)
name: Security Validation
on:
pull_request:
push:
branches: [main]
permissions:
contents: read
security-events: write
jobs:
security-checks:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Scan for secrets
uses: trufflesecurity/trufflehog@main
with:
path: ./
base: ${{ github.event.repository.default_branch }}
head: HEAD
- name: Vulnerability scanning
uses: aquasecurity/trivy-action@master
with:
scan-type: 'fs'
scan-ref: '.'
format: 'sarif'
output: 'trivy-results.sarif'
- name: Upload results to GitHub Security
uses: github/codeql-action/upload-sarif@v3
with:
sarif_file: 'trivy-results.sarif'
- name: Validate no service account keys
run: |
if find . -name "*service-account*.json" -o -name "*credentials*.json"; then
echo "❌ Service account key files detected"
exit 1
fi
echo "✅ No service account keys found"
- name: Validate WIF usage in workflows
run: |
if grep -r "credentials_json" .github/workflows/; then
echo "❌ JSON credentials detected (use WIF)"
exit 1
fi
echo "✅ Workflows use WIF"
- name: Validate IAM roles (no owner/editor)
run: |
if grep -r "roles/owner\|roles/editor" . --include="*.tf" --include="*.yaml"; then
echo "❌ Overly permissive IAM roles detected"
exit 1
fi
echo "✅ Least privilege IAM roles"
Vertex AI Agent Engine Specific Validations
Deployment Configuration Validation
# scripts/validate-agent-config.py
from typing import Dict, Any
def validate_vertex_agent_config(config: Dict[str, Any]) -> None:
"""
Comprehensive Vertex AI Agent Engine configuration validation.
"""
# 1. Model Selection
model = config.get("model")
assert model in ["gemini-2.5-pro", "gemini-2.5-flash"], \
f"❌ Invalid model: {model}. Use gemini-2.5-pro or gemini-2.5-flash"
# 2. Code Execution Sandbox
code_exec = config.get("code_execution_config", {})
if code_exec.get("enabled"):
ttl = code_exec.get("state_ttl_days")
assert 1 <= ttl <= 14, \
f"❌ State TTL must be 1-14 days, got {ttl}"
assert code_exec.get("sandbox_type") == "SECURE_ISOLATED", \
"❌ Sandbox type must be SECURE_ISOLATED"
timeout = code_exec.get("timeout_seconds")
assert 1 <= timeout <= 600, \
f"❌ Timeout must be 1-600 seconds, got {timeout}"
# 3. Memory Bank
memory = config.get("memory_bank_config", {})
if memory.get("enabled"):
max_memories = memory.get("max_memories")
assert max_memories >= 100, \
f"⚠️ Low memory limit: {max_memories}. Recommend >= 100"
assert memory.get("indexing_enabled"), \
"⚠️ Indexing disabled will slow query performance"
assert memory.get("auto_cleanup"), \
"⚠️ Auto-cleanup disabled may exceed quotas"
# 4. Security
assert config.get("model_armor", {}).get("enabled"), \
"❌ Model Armor must be enabled (prompt injection protection)"
assert config.get("vpc_config"), \
"❌ VPC configuration required for enterprise deployment"
# 5. Auto-Scaling
auto_scaling = config.get("auto_scaling", {})
assert auto_scaling.get("min_instances") >= 1, \
"❌ min_instances must be >= 1 for production"
assert auto_scaling.get("max_instances") >= 3, \
"⚠️ max_instances should be >= 3 for high availability"
# 6. IAM
sa = config.get("service_account")
assert sa and "@" in sa, \
f"❌ Invalid service account: {sa}"
print("✅ All Vertex AI agent configuration checks passed")
Post-Deployment Health Check
# scripts/validate-deployment.py
from google.cloud.aiplatform import agent_builder
import requests
def validate_vertex_deployment(
project_id: str,
location: str,
agent_id: str
) -> bool:
"""
Post-deployment validation for Vertex AI Agent Engine.
"""
client = agent_builder.AgentBuilderClient()
agent_name = f"projects/{project_id}/locations/{location}/agents/{agent_id}"
# 1. Agent Status
agent = client.get_agent(name=agent_name)
assert agent.state == "RUNNING", \
f"❌ Agent not running: {agent.state}"
print(f"✅ Agent status: {agent.state}")
# 2. Code Execution Sandbox
assert agent.code_execution_config.enabled, \
"❌ Code Execution not enabled"
print(f"✅ Code Execution enabled (TTL: {agent.code_execution_config.state_ttl_days} days)")
# 3. Memory Bank
assert agent.memory_bank_config.enabled, \
"❌ Memory Bank not enabled"
print(f"✅ Memory Bank enabled")
# 4. A2A Protocol Compliance
agentcard_url = f"{agent.agent_endpoint}/.well-known/agent-card"
response = requests.get(agentcard_url, timeout=10)
assert response.status_code == 200, \
f"❌ AgentCard not accessible: {response.status_code}"
agentcard = response.json()
assert "name" in agentcard and "version" in agentcard, \
"❌ AgentCard missing required fields"
print(f"✅ A2A Protocol: AgentCard accessible")
# 5. Model Armor
assert agent.model_armor.enabled, \
"❌ Model Armor not enabled"
print(f"✅ Model Armor enabled (prompt injection protection)")
# 6. Endpoint
assert agent.agent_endpoint, \
"❌ Agent endpoint not available"
print(f"✅ Agent endpoint: {agent.agent_endpoint}")
# 7. Service Account
assert agent.service_account, \
"❌ Service account not configured"
print(f"✅ Service account: {agent.service_account}")
print("\n✅ All post-deployment validations passed!")
return True
Tool Permissions
This skill uses:
- Read: Analyze workflow files and configurations
- Write: Create GitHub Actions workflows
- Edit: Update existing workflows for compliance
- Grep: Search for security issues (JSON keys, etc.)
- Glob: Find workflow files across repository
- Bash: Execute validation scripts and gcloud commands
Integration with Other Plugins
Works with jeremy-adk-orchestrator
- Provides CI/CD for ADK agent deployments
- Automates A2A protocol validation
- Ensures production readiness
Works with jeremy-vertex-validator
- GitHub Actions calls vertex-validator for post-deployment checks
- Comprehensive validation pipeline
- Production readiness scoring
Works with jeremy-adk-terraform
- GitHub Actions deploys Terraform infrastructure
- Automated infrastructure provisioning
- Validation of Terraform-provisioned resources
Works with jeremy-vertex-engine
- GitHub Actions triggers vertex-engine-inspector
- Continuous health monitoring
- Automated compliance checks
Best Practices Summary
Security (MANDATORY)
✅ Use WIF (Workload Identity Federation) - never JSON keys
✅ Require id-token: write permission for OIDC
✅ IAM least privilege (never owner/editor roles)
✅ Attribute-based access control (restrict by repository)
✅ Enable Model Armor for agents
✅ VPC Service Controls for enterprise isolation
✅ Scan for secrets in code (Trufflehog)
✅ Vulnerability scanning (Trivy)
Vertex AI Specific (MANDATORY)
✅ Code Execution Sandbox: 7-14 day TTL ✅ Memory Bank enabled for stateful agents ✅ A2A Protocol compliance (AgentCard validation) ✅ Model Armor enabled (prompt injection protection) ✅ Auto-scaling configured (min >= 1, max >= 3) ✅ Post-deployment validation (agent status, endpoints) ✅ Monitoring dashboards created ✅ Alerting policies configured
CI/CD (RECOMMENDED)
✅ Conditional job execution (only on relevant paths) ✅ Caching for dependencies (faster builds) ✅ Concurrent jobs when possible ✅ Rollback strategies for failed deployments ✅ Health check endpoints
Version History
- 1.0.0 (2025): Initial release with WIF enforcement, Vertex AI validations, security scanning
References
- Workload Identity Federation: https://cloud.google.com/iam/docs/workload-identity-federation
- GitHub OIDC: https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/about-security-hardening-with-openid-connect
- Vertex AI Agent Engine: https://cloud.google.com/vertex-ai/generative-ai/docs/agent-engine/overview
- google-github-actions/auth: https://github.com/google-github-actions/auth
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
