MCP HubMCP Hub
返回技能列表

setup-assistant

RobThePCGuy
更新于 Today
73 次查看
2
2
在 GitHub 上查看
aidesign

关于

The setup-assistant skill guides developers through installing, configuring, and performing first-time setup for the Claude Patent Creator MCP server. It provides a complete setup lifecycle from pre-installation checks to verification, including quick setup scripts and troubleshooting steps. Use it for initial installation, environment configuration, authentication setup, or when migrating to a new machine.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator
Git 克隆备选方式
git clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/setup-assistant

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Setup Assistant Skill

Expert system for installing, configuring, and setting up the Claude Patent Creator MCP server.

When to Use

Installing first time, setting up new environment, configuring authentication, troubleshooting installation, migrating to new machine, updating dependencies, verifying health.

Quick Setup (5 Minutes)

# 1. Create virtual environment
python -m venv venv
venv\Scripts\activate  # Windows
source venv/bin/activate  # Linux/macOS

# 2. Run installer
python install.py

# 3. Restart Claude Code

# 4. Test
# Ask Claude: "Search MPEP for claim definiteness"

Complete Setup Lifecycle

Phase 1: Pre-Installation Checks

Requirements:

  • Python 3.9-3.12 (3.11 recommended)
  • 8GB+ RAM (16GB recommended)
  • 5GB free disk
  • Optional: NVIDIA GPU with CUDA 12.x

Verify:

python --version  # Should show 3.9-3.12
nvidia-smi        # Optional: Check GPU

Phase 2: Virtual Environment

# Create venv
python -m venv venv

# Activate
venv\Scripts\activate  # Windows
source venv/bin/activate  # Linux/macOS

# Verify
which python  # Should show venv path

Important: Always activate venv before running scripts!

Phase 3: Dependency Installation

Automated (Recommended):

python install.py
# Handles: PyTorch order, GPU detection, MCP registration

Manual (Advanced):

# Install PyTorch FIRST (critical!)
pip install torch torchvision --index-url https://download.pytorch.org/whl/cu128

# Then install package (includes all dependencies)
pip install -e .

Why PyTorch order matters: If installed after sentence-transformers, you get CPU-only version.

Phase 4: BigQuery Authentication

# Authenticate
gcloud auth application-default login \
  --scopes=https://www.googleapis.com/auth/cloud-platform

# Set project
gcloud config set project YOUR_PROJECT_ID

# Add to .env
echo "GOOGLE_CLOUD_PROJECT=YOUR_PROJECT_ID" >> .env

# Test
python scripts/test_bigquery.py

Phase 5: MCP Server Registration

Automated:

python install.py  # Handles registration automatically

Manual:

# Get paths
patent-creator verify-config

# Register (use forward slashes!)
claude mcp add --transport stdio claude-patent-creator --scope user -- \
  "C:/path/to/venv/Scripts/python.exe" \
  "C:/path/to/mcp_server/server.py"

# Verify
claude mcp list

Critical: Restart Claude Code after registration!

Phase 6: Configuration Files

Create .env:

# Required
GOOGLE_CLOUD_PROJECT=your_project_id
ANTHROPIC_API_KEY=<YOUR_ANTHROPIC_API_KEY>

# Optional
PATENT_LOG_LEVEL=INFO
PATENT_LOG_FORMAT=human
PATENT_ENABLE_METRICS=true

# Windows only
CLAUDE_CODE_GIT_BASH_PATH=C:\dev\Git\bin\bash.exe

Phase 7: Health Check

patent-creator health

# Expected:
# [OK] Python version OK
# [OK] Dependencies installed
# [OK] PyTorch with CUDA
# [OK] MPEP index loaded
# [OK] BigQuery configured
# [OK] All systems operational

Phase 8: Testing

python scripts/test_install.py
python scripts/test_gpu.py
python scripts/test_bigquery.py
python scripts/test_analyzers.py

Phase 9: First Use Validation

Test each capability:

1. "Search MPEP for claim definiteness requirements"
2. "Search for patents about neural networks filed in 2024"
3. "Review these claims: 1. A system comprising..."
4. "Create a flowchart for user login process"

If all work -> Setup complete!

Common Setup Issues

IssueSolution
PyTorch CPU-onlyReinstall PyTorch FIRST
MCP not loadingRestart Claude Code, verify with claude mcp list
Path errorsUse forward slashes (/) not backslashes (\)
BigQuery failsRe-auth: gcloud auth application-default login
Index not foundBuild: patent-creator rebuild-index
Import errorsActivate venv

Platform-Specific Notes

Windows

  • PowerShell: Use venv\Scripts\activate
  • Git Bash required for MCP commands
  • Paths: Always forward slashes in MCP config
  • CUDA: Install NVIDIA drivers + toolkit

Linux

  • venv: source venv/bin/activate
  • FAISS-GPU: Available on Linux only
  • Permissions: May need sudo

macOS

  • Apple Silicon: Use MPS (auto-detected)
  • Intel: Use CPU or external GPU
  • Homebrew: May need for dependencies

Update & Maintenance

Updating Dependencies

venv\Scripts\activate
pip install -e . --upgrade
python scripts/test_install.py

Rebuilding Index

patent-creator rebuild-index
# Wait 5-15 minutes

Re-registering MCP

claude mcp remove claude-patent-creator
python install.py
# Restart Claude Code

Quick Reference

Essential Commands

# Setup
python install.py
patent-creator health
claude mcp list

# Testing
python scripts/test_install.py
python scripts/test_gpu.py
python scripts/test_bigquery.py

# Maintenance
patent-creator rebuild-index
patent-creator verify-config

Critical Files

  • .env - Environment variables
  • requirements.txt - Dependencies
  • mcp_server/index/ - MPEP search index
  • pdfs/ - MPEP PDF files

GitHub 仓库

RobThePCGuy/Claude-Patent-Creator
路径: skills/setup-assistant
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能