collecting-infrastructure-metrics
关于
This skill automates the setup of comprehensive infrastructure monitoring by collecting performance metrics across compute, storage, network, and databases. It configures collection agents, sets up aggregation, and helps create dashboards for health and capacity tracking. Developers should use it when needing to implement monitoring with tools like Prometheus, Datadog, or CloudWatch.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/collecting-infrastructure-metrics在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill automates the process of setting up infrastructure metrics collection. It identifies key performance indicators (KPIs) across various infrastructure layers, configures agents to collect these metrics, and assists in setting up central aggregation and visualization.
How It Works
- Identify Infrastructure Layers: Determines the infrastructure layers to monitor (compute, storage, network, containers, load balancers, databases).
- Configure Metrics Collection: Sets up agents (Prometheus, Datadog, CloudWatch) to collect metrics from the identified layers.
- Aggregate Metrics: Configures central aggregation of the collected metrics for analysis and visualization.
- Create Dashboards: Generates infrastructure dashboards for health monitoring, performance analysis, and capacity tracking.
When to Use This Skill
This skill activates when you need to:
- Monitor the performance of your infrastructure.
- Identify bottlenecks in your system.
- Set up dashboards for real-time monitoring.
Examples
Example 1: Setting up basic monitoring
User request: "Collect infrastructure metrics for my web server."
The skill will:
- Identify compute, storage, and network layers relevant to the web server.
- Configure Prometheus to collect CPU, memory, disk I/O, and network bandwidth metrics.
Example 2: Troubleshooting database performance
User request: "I'm seeing slow database queries. Can you help me monitor the database performance?"
The skill will:
- Identify the database layer and relevant metrics such as connection pool usage, replication lag, and cache hit rates.
- Configure Datadog to collect these metrics and create a dashboard to visualize performance trends.
Best Practices
- Agent Selection: Choose the appropriate agent (Prometheus, Datadog, CloudWatch) based on your existing infrastructure and monitoring tools.
- Metric Granularity: Balance the granularity of metrics collection with the storage and processing overhead. Collect only the essential metrics for your use case.
- Alerting: Configure alerts based on thresholds for key metrics to proactively identify and address performance issues.
Integration
This skill can be integrated with other Claude Code plugins for deployment, configuration management, and alerting to provide a comprehensive infrastructure management solution. For example, it can be used with a deployment plugin to automatically configure metrics collection after deploying new infrastructure.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
