MCP HubMCP Hub
返回技能列表

n8n-workflow-patterns

davila7
更新于 Today
197 次查看
18,478
1,685
18,478
在 GitHub 上查看
aiapiautomationdesigndata

关于

This skill provides proven architectural patterns for building n8n workflows, based on analysis of real-world usage. It covers core patterns like webhook processing, HTTP API integration, and database operations to help structure workflows effectively. Use it when designing new workflows, choosing patterns, or planning architecture for integrations and automated tasks.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/davila7/claude-code-templates
Git 克隆备选方式
git clone https://github.com/davila7/claude-code-templates.git ~/.claude/skills/n8n-workflow-patterns

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

n8n Workflow Patterns

Proven architectural patterns for building n8n workflows.


The 5 Core Patterns

Based on analysis of real workflow usage:

  1. Webhook Processing (Most Common)

    • Receive HTTP requests → Process → Output
    • Pattern: Webhook → Validate → Transform → Respond/Notify
  2. HTTP API Integration

    • Fetch from REST APIs → Transform → Store/Use
    • Pattern: Trigger → HTTP Request → Transform → Action → Error Handler
  3. Database Operations

    • Read/Write/Sync database data
    • Pattern: Schedule → Query → Transform → Write → Verify
  4. AI Agent Workflow

    • AI agents with tools and memory
    • Pattern: Trigger → AI Agent (Model + Tools + Memory) → Output
  5. Scheduled Tasks

    • Recurring automation workflows
    • Pattern: Schedule → Fetch → Process → Deliver → Log

Pattern Selection Guide

When to use each pattern:

Webhook Processing - Use when:

  • Receiving data from external systems
  • Building integrations (Slack commands, form submissions, GitHub webhooks)
  • Need instant response to events
  • Example: "Receive Stripe payment webhook → Update database → Send confirmation"

HTTP API Integration - Use when:

  • Fetching data from external APIs
  • Synchronizing with third-party services
  • Building data pipelines
  • Example: "Fetch GitHub issues → Transform → Create Jira tickets"

Database Operations - Use when:

  • Syncing between databases
  • Running database queries on schedule
  • ETL workflows
  • Example: "Read Postgres records → Transform → Write to MySQL"

AI Agent Workflow - Use when:

  • Building conversational AI
  • Need AI with tool access
  • Multi-step reasoning tasks
  • Example: "Chat with AI that can search docs, query database, send emails"

Scheduled Tasks - Use when:

  • Recurring reports or summaries
  • Periodic data fetching
  • Maintenance tasks
  • Example: "Daily: Fetch analytics → Generate report → Email team"

Common Workflow Components

All patterns share these building blocks:

1. Triggers

  • Webhook - HTTP endpoint (instant)
  • Schedule - Cron-based timing (periodic)
  • Manual - Click to execute (testing)
  • Polling - Check for changes (intervals)

2. Data Sources

  • HTTP Request - REST APIs
  • Database nodes - Postgres, MySQL, MongoDB
  • Service nodes - Slack, Google Sheets, etc.
  • Code - Custom JavaScript/Python

3. Transformation

  • Set - Map/transform fields
  • Code - Complex logic
  • IF/Switch - Conditional routing
  • Merge - Combine data streams

4. Outputs

  • HTTP Request - Call APIs
  • Database - Write data
  • Communication - Email, Slack, Discord
  • Storage - Files, cloud storage

5. Error Handling

  • Error Trigger - Catch workflow errors
  • IF - Check for error conditions
  • Stop and Error - Explicit failure
  • Continue On Fail - Per-node setting

Workflow Creation Checklist

When building ANY workflow, follow this checklist:

Planning Phase

  • Identify the pattern (webhook, API, database, AI, scheduled)
  • List required nodes (use search_nodes)
  • Understand data flow (input → transform → output)
  • Plan error handling strategy

Implementation Phase

  • Create workflow with appropriate trigger
  • Add data source nodes
  • Configure authentication/credentials
  • Add transformation nodes (Set, Code, IF)
  • Add output/action nodes
  • Configure error handling

Validation Phase

  • Validate each node configuration (validate_node_operation)
  • Validate complete workflow (validate_workflow)
  • Test with sample data
  • Handle edge cases (empty data, errors)

Deployment Phase

  • Review workflow settings (execution order, timeout, error handling)
  • Activate workflow ⚠️ Manual activation required in n8n UI (API/MCP cannot activate)
  • Monitor first executions
  • Document workflow purpose and data flow

Data Flow Patterns

Linear Flow

Trigger → Transform → Action → End

Use when: Simple workflows with single path

Branching Flow

Trigger → IF → [True Path]
             └→ [False Path]

Use when: Different actions based on conditions

Parallel Processing

Trigger → [Branch 1] → Merge
       └→ [Branch 2] ↗

Use when: Independent operations that can run simultaneously

Loop Pattern

Trigger → Split in Batches → Process → Loop (until done)

Use when: Processing large datasets in chunks

Error Handler Pattern

Main Flow → [Success Path]
         └→ [Error Trigger → Error Handler]

Use when: Need separate error handling workflow


Common Gotchas

1. Webhook Data Structure

Problem: Can't access webhook payload data

Solution: Data is nested under $json.body

❌ {{$json.email}}
✅ {{$json.body.email}}

See: n8n Expression Syntax skill

2. Multiple Input Items

Problem: Node processes all input items, but I only want one

Solution: Use "Execute Once" mode or process first item only

{{$json[0].field}}  // First item only

3. Authentication Issues

Problem: API calls failing with 401/403

Solution:

  • Configure credentials properly
  • Use the "Credentials" section, not parameters
  • Test credentials before workflow activation

4. Node Execution Order

Problem: Nodes executing in unexpected order

Solution: Check workflow settings → Execution Order

  • v0: Top-to-bottom (legacy)
  • v1: Connection-based (recommended)

5. Expression Errors

Problem: Expressions showing as literal text

Solution: Use {{}} around expressions

  • See n8n Expression Syntax skill for details

Integration with Other Skills

These skills work together with Workflow Patterns:

n8n MCP Tools Expert - Use to:

  • Find nodes for your pattern (search_nodes)
  • Understand node operations (get_node_essentials)
  • Create workflows (n8n_create_workflow)

n8n Expression Syntax - Use to:

  • Write expressions in transformation nodes
  • Access webhook data correctly ({{$json.body.field}})
  • Reference previous nodes ({{$node["Node Name"].json.field}})

n8n Node Configuration - Use to:

  • Configure specific operations for pattern nodes
  • Understand node-specific requirements

n8n Validation Expert - Use to:

  • Validate workflow structure
  • Fix validation errors
  • Ensure workflow correctness before deployment

Pattern Statistics

Common workflow patterns:

Most Common Triggers:

  1. Webhook - 35%
  2. Schedule (periodic tasks) - 28%
  3. Manual (testing/admin) - 22%
  4. Service triggers (Slack, email, etc.) - 15%

Most Common Transformations:

  1. Set (field mapping) - 68%
  2. Code (custom logic) - 42%
  3. IF (conditional routing) - 38%
  4. Switch (multi-condition) - 18%

Most Common Outputs:

  1. HTTP Request (APIs) - 45%
  2. Slack - 32%
  3. Database writes - 28%
  4. Email - 24%

Average Workflow Complexity:

  • Simple (3-5 nodes): 42%
  • Medium (6-10 nodes): 38%
  • Complex (11+ nodes): 20%

Quick Start Examples

Example 1: Simple Webhook → Slack

1. Webhook (path: "form-submit", POST)
2. Set (map form fields)
3. Slack (post message to #notifications)

Example 2: Scheduled Report

1. Schedule (daily at 9 AM)
2. HTTP Request (fetch analytics)
3. Code (aggregate data)
4. Email (send formatted report)
5. Error Trigger → Slack (notify on failure)

Example 3: Database Sync

1. Schedule (every 15 minutes)
2. Postgres (query new records)
3. IF (check if records exist)
4. MySQL (insert records)
5. Postgres (update sync timestamp)

Example 4: AI Assistant

1. Webhook (receive chat message)
2. AI Agent
   ├─ OpenAI Chat Model (ai_languageModel)
   ├─ HTTP Request Tool (ai_tool)
   ├─ Database Tool (ai_tool)
   └─ Window Buffer Memory (ai_memory)
3. Webhook Response (send AI reply)

Example 5: API Integration

1. Manual Trigger (for testing)
2. HTTP Request (GET /api/users)
3. Split In Batches (process 100 at a time)
4. Set (transform user data)
5. Postgres (upsert users)
6. Loop (back to step 3 until done)

Detailed Pattern Files

For comprehensive guidance on each pattern:


Real Template Examples

From n8n template library:

Template #2947: Weather to Slack

  • Pattern: Scheduled Task
  • Nodes: Schedule → HTTP Request (weather API) → Set → Slack
  • Complexity: Simple (4 nodes)

Webhook Processing: Most common pattern

  • Most common: Form submissions, payment webhooks, chat integrations

HTTP API: Common pattern

  • Most common: Data fetching, third-party integrations

Database Operations: Common pattern

  • Most common: ETL, data sync, backup workflows

AI Agents: Growing in usage

  • Most common: Chatbots, content generation, data analysis

Use search_templates and get_template from n8n-mcp tools to find examples!


Best Practices

✅ Do

  • Start with the simplest pattern that solves your problem
  • Plan your workflow structure before building
  • Use error handling on all workflows
  • Test with sample data before activation
  • Follow the workflow creation checklist
  • Use descriptive node names
  • Document complex workflows (notes field)
  • Monitor workflow executions after deployment

❌ Don't

  • Build workflows in one shot (iterate! avg 56s between edits)
  • Skip validation before activation
  • Ignore error scenarios
  • Use complex patterns when simple ones suffice
  • Hardcode credentials in parameters
  • Forget to handle empty data cases
  • Mix multiple patterns without clear boundaries
  • Deploy without testing

Summary

Key Points:

  1. 5 core patterns cover 90%+ of workflow use cases
  2. Webhook processing is the most common pattern
  3. Use the workflow creation checklist for every workflow
  4. Plan patternSelect nodesBuildValidateDeploy
  5. Integrate with other skills for complete workflow development

Next Steps:

  1. Identify your use case pattern
  2. Read the detailed pattern file
  3. Use n8n MCP Tools Expert to find nodes
  4. Follow the workflow creation checklist
  5. Use n8n Validation Expert to validate

Related Skills:

  • n8n MCP Tools Expert - Find and configure nodes
  • n8n Expression Syntax - Write expressions correctly
  • n8n Validation Expert - Validate and fix errors
  • n8n Node Configuration - Configure specific operations

GitHub 仓库

davila7/claude-code-templates
路径: cli-tool/components/skills/workflow-automation/n8n/n8n-workflow-patterns
anthropicanthropic-claudeclaudeclaude-code

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能