llamaindex
关于
LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.
快速安装
Claude Code
推荐/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLsgit clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/llamaindex在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
LlamaIndex - Data Framework for LLM Applications
The leading framework for connecting LLMs with your data.
When to use LlamaIndex
Use LlamaIndex when:
- Building RAG (retrieval-augmented generation) applications
- Need document question-answering over private data
- Ingesting data from multiple sources (300+ connectors)
- Creating knowledge bases for LLMs
- Building chatbots with enterprise data
- Need structured data extraction from documents
Metrics:
- 45,100+ GitHub stars
- 23,000+ repositories use LlamaIndex
- 300+ data connectors (LlamaHub)
- 1,715+ contributors
- v0.14.7 (stable)
Use alternatives instead:
- LangChain: More general-purpose, better for agents
- Haystack: Production search pipelines
- txtai: Lightweight semantic search
- Chroma: Just need vector storage
Quick start
Installation
# Starter package (recommended)
pip install llama-index
# Or minimal core + specific integrations
pip install llama-index-core
pip install llama-index-llms-openai
pip install llama-index-embeddings-openai
5-line RAG example
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
# Load documents
documents = SimpleDirectoryReader("data").load_data()
# Create index
index = VectorStoreIndex.from_documents(documents)
# Query
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)
Core concepts
1. Data connectors - Load documents
from llama_index.core import SimpleDirectoryReader, Document
from llama_index.readers.web import SimpleWebPageReader
from llama_index.readers.github import GithubRepositoryReader
# Directory of files
documents = SimpleDirectoryReader("./data").load_data()
# Web pages
reader = SimpleWebPageReader()
documents = reader.load_data(["https://example.com"])
# GitHub repository
reader = GithubRepositoryReader(owner="user", repo="repo")
documents = reader.load_data(branch="main")
# Manual document creation
doc = Document(
text="This is the document content",
metadata={"source": "manual", "date": "2025-01-01"}
)
2. Indices - Structure data
from llama_index.core import VectorStoreIndex, ListIndex, TreeIndex
# Vector index (most common - semantic search)
vector_index = VectorStoreIndex.from_documents(documents)
# List index (sequential scan)
list_index = ListIndex.from_documents(documents)
# Tree index (hierarchical summary)
tree_index = TreeIndex.from_documents(documents)
# Save index
index.storage_context.persist(persist_dir="./storage")
# Load index
from llama_index.core import load_index_from_storage, StorageContext
storage_context = StorageContext.from_defaults(persist_dir="./storage")
index = load_index_from_storage(storage_context)
3. Query engines - Ask questions
# Basic query
query_engine = index.as_query_engine()
response = query_engine.query("What is the main topic?")
print(response)
# Streaming response
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query("Explain quantum computing")
for text in response.response_gen:
print(text, end="", flush=True)
# Custom configuration
query_engine = index.as_query_engine(
similarity_top_k=3, # Return top 3 chunks
response_mode="compact", # Or "tree_summarize", "simple_summarize"
verbose=True
)
4. Retrievers - Find relevant chunks
# Vector retriever
retriever = index.as_retriever(similarity_top_k=5)
nodes = retriever.retrieve("machine learning")
# With filtering
retriever = index.as_retriever(
similarity_top_k=3,
filters={"metadata.category": "tutorial"}
)
# Custom retriever
from llama_index.core.retrievers import BaseRetriever
class CustomRetriever(BaseRetriever):
def _retrieve(self, query_bundle):
# Your custom retrieval logic
return nodes
Agents with tools
Basic agent
from llama_index.core.agent import FunctionAgent
from llama_index.llms.openai import OpenAI
# Define tools
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
# Create agent
llm = OpenAI(model="gpt-4o")
agent = FunctionAgent.from_tools(
tools=[multiply, add],
llm=llm,
verbose=True
)
# Use agent
response = agent.chat("What is 25 * 17 + 142?")
print(response)
RAG agent (document search + tools)
from llama_index.core.tools import QueryEngineTool
# Create index as before
index = VectorStoreIndex.from_documents(documents)
# Wrap query engine as tool
query_tool = QueryEngineTool.from_defaults(
query_engine=index.as_query_engine(),
name="python_docs",
description="Useful for answering questions about Python programming"
)
# Agent with document search + calculator
agent = FunctionAgent.from_tools(
tools=[query_tool, multiply, add],
llm=llm
)
# Agent decides when to search docs vs calculate
response = agent.chat("According to the docs, what is Python used for?")
Advanced RAG patterns
Chat engine (conversational)
from llama_index.core.chat_engine import CondensePlusContextChatEngine
# Chat with memory
chat_engine = index.as_chat_engine(
chat_mode="condense_plus_context", # Or "context", "react"
verbose=True
)
# Multi-turn conversation
response1 = chat_engine.chat("What is Python?")
response2 = chat_engine.chat("Can you give examples?") # Remembers context
response3 = chat_engine.chat("What about web frameworks?")
Metadata filtering
from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter
# Filter by metadata
filters = MetadataFilters(
filters=[
ExactMatchFilter(key="category", value="tutorial"),
ExactMatchFilter(key="difficulty", value="beginner")
]
)
retriever = index.as_retriever(
similarity_top_k=3,
filters=filters
)
query_engine = index.as_query_engine(filters=filters)
Structured output
from pydantic import BaseModel
from llama_index.core.output_parsers import PydanticOutputParser
class Summary(BaseModel):
title: str
main_points: list[str]
conclusion: str
# Get structured response
output_parser = PydanticOutputParser(output_cls=Summary)
query_engine = index.as_query_engine(output_parser=output_parser)
response = query_engine.query("Summarize the document")
summary = response # Pydantic model
print(summary.title, summary.main_points)
Data ingestion patterns
Multiple file types
# Load all supported formats
documents = SimpleDirectoryReader(
"./data",
recursive=True,
required_exts=[".pdf", ".docx", ".txt", ".md"]
).load_data()
Web scraping
from llama_index.readers.web import BeautifulSoupWebReader
reader = BeautifulSoupWebReader()
documents = reader.load_data(urls=[
"https://docs.python.org/3/tutorial/",
"https://docs.python.org/3/library/"
])
Database
from llama_index.readers.database import DatabaseReader
reader = DatabaseReader(
sql_database_uri="postgresql://user:pass@localhost/db"
)
documents = reader.load_data(query="SELECT * FROM articles")
API endpoints
from llama_index.readers.json import JSONReader
reader = JSONReader()
documents = reader.load_data("https://api.example.com/data.json")
Vector store integrations
Chroma (local)
from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb
# Initialize Chroma
db = chromadb.PersistentClient(path="./chroma_db")
collection = db.get_or_create_collection("my_collection")
# Create vector store
vector_store = ChromaVectorStore(chroma_collection=collection)
# Use in index
from llama_index.core import StorageContext
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
Pinecone (cloud)
from llama_index.vector_stores.pinecone import PineconeVectorStore
import pinecone
# Initialize Pinecone
pinecone.init(api_key="your-key", environment="us-west1-gcp")
pinecone_index = pinecone.Index("my-index")
# Create vector store
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
FAISS (fast)
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
# Create FAISS index
d = 1536 # Dimension of embeddings
faiss_index = faiss.IndexFlatL2(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
Customization
Custom LLM
from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings
# Set global LLM
Settings.llm = Anthropic(model="claude-sonnet-4-5-20250929")
# Now all queries use Anthropic
query_engine = index.as_query_engine()
Custom embeddings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
# Use HuggingFace embeddings
Settings.embed_model = HuggingFaceEmbedding(
model_name="sentence-transformers/all-mpnet-base-v2"
)
index = VectorStoreIndex.from_documents(documents)
Custom prompt templates
from llama_index.core import PromptTemplate
qa_prompt = PromptTemplate(
"Context: {context_str}\n"
"Question: {query_str}\n"
"Answer the question based only on the context. "
"If the answer is not in the context, say 'I don't know'.\n"
"Answer: "
)
query_engine = index.as_query_engine(text_qa_template=qa_prompt)
Multi-modal RAG
Image + text
from llama_index.core import SimpleDirectoryReader
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
# Load images and documents
documents = SimpleDirectoryReader(
"./data",
required_exts=[".jpg", ".png", ".pdf"]
).load_data()
# Multi-modal index
index = VectorStoreIndex.from_documents(documents)
# Query with multi-modal LLM
multi_modal_llm = OpenAIMultiModal(model="gpt-4o")
query_engine = index.as_query_engine(llm=multi_modal_llm)
response = query_engine.query("What is in the diagram on page 3?")
Evaluation
Response quality
from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator
# Evaluate relevance
relevancy = RelevancyEvaluator()
result = relevancy.evaluate_response(
query="What is Python?",
response=response
)
print(f"Relevancy: {result.passing}")
# Evaluate faithfulness (no hallucination)
faithfulness = FaithfulnessEvaluator()
result = faithfulness.evaluate_response(
query="What is Python?",
response=response
)
print(f"Faithfulness: {result.passing}")
Best practices
- Use vector indices for most cases - Best performance
- Save indices to disk - Avoid re-indexing
- Chunk documents properly - 512-1024 tokens optimal
- Add metadata - Enables filtering and tracking
- Use streaming - Better UX for long responses
- Enable verbose during dev - See retrieval process
- Evaluate responses - Check relevance and faithfulness
- Use chat engine for conversations - Built-in memory
- Persist storage - Don't lose your index
- Monitor costs - Track embedding and LLM usage
Common patterns
Document Q&A system
# Complete RAG pipeline
documents = SimpleDirectoryReader("docs").load_data()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir="./storage")
# Query
query_engine = index.as_query_engine(
similarity_top_k=3,
response_mode="compact",
verbose=True
)
response = query_engine.query("What is the main topic?")
print(response)
print(f"Sources: {[node.metadata['file_name'] for node in response.source_nodes]}")
Chatbot with memory
# Conversational interface
chat_engine = index.as_chat_engine(
chat_mode="condense_plus_context",
verbose=True
)
# Multi-turn chat
while True:
user_input = input("You: ")
if user_input.lower() == "quit":
break
response = chat_engine.chat(user_input)
print(f"Bot: {response}")
Performance benchmarks
| Operation | Latency | Notes |
|---|---|---|
| Index 100 docs | ~10-30s | One-time, can persist |
| Query (vector) | ~0.5-2s | Retrieval + LLM |
| Streaming query | ~0.5s first token | Better UX |
| Agent with tools | ~3-8s | Multiple tool calls |
LlamaIndex vs LangChain
| Feature | LlamaIndex | LangChain |
|---|---|---|
| Best for | RAG, document Q&A | Agents, general LLM apps |
| Data connectors | 300+ (LlamaHub) | 100+ |
| RAG focus | Core feature | One of many |
| Learning curve | Easier for RAG | Steeper |
| Customization | High | Very high |
| Documentation | Excellent | Good |
Use LlamaIndex when:
- Your primary use case is RAG
- Need many data connectors
- Want simpler API for document Q&A
- Building knowledge retrieval system
Use LangChain when:
- Building complex agents
- Need more general-purpose tools
- Want more flexibility
- Complex multi-step workflows
References
- Query Engines Guide - Query modes, customization, streaming
- Agents Guide - Tool creation, RAG agents, multi-step reasoning
- Data Connectors Guide - 300+ connectors, custom loaders
Resources
- GitHub: https://github.com/run-llama/llama_index ⭐ 45,100+
- Docs: https://developers.llamaindex.ai/python/framework/
- LlamaHub: https://llamahub.ai (data connectors)
- LlamaCloud: https://cloud.llamaindex.ai (enterprise)
- Discord: https://discord.gg/dGcwcsnxhU
- Version: 0.14.7+
- License: MIT
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
