MCP HubMCP Hub
返回技能列表

llamaindex

zechenzhangAGI
更新于 Today
73 次查看
62
2
62
在 GitHub 上查看
wordaidesigndata

关于

LlamaIndex is a data framework for building RAG-powered LLM applications, specializing in document ingestion, indexing, and querying. It provides key features like vector indices, query engines, and agents, and supports over 300 data connectors. Use it for document Q&A, chatbots, and knowledge retrieval when building data-centric applications.

技能文档

LlamaIndex - Data Framework for LLM Applications

The leading framework for connecting LLMs with your data.

When to use LlamaIndex

Use LlamaIndex when:

  • Building RAG (retrieval-augmented generation) applications
  • Need document question-answering over private data
  • Ingesting data from multiple sources (300+ connectors)
  • Creating knowledge bases for LLMs
  • Building chatbots with enterprise data
  • Need structured data extraction from documents

Metrics:

  • 45,100+ GitHub stars
  • 23,000+ repositories use LlamaIndex
  • 300+ data connectors (LlamaHub)
  • 1,715+ contributors
  • v0.14.7 (stable)

Use alternatives instead:

  • LangChain: More general-purpose, better for agents
  • Haystack: Production search pipelines
  • txtai: Lightweight semantic search
  • Chroma: Just need vector storage

Quick start

Installation

# Starter package (recommended)
pip install llama-index

# Or minimal core + specific integrations
pip install llama-index-core
pip install llama-index-llms-openai
pip install llama-index-embeddings-openai

5-line RAG example

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

# Load documents
documents = SimpleDirectoryReader("data").load_data()

# Create index
index = VectorStoreIndex.from_documents(documents)

# Query
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)

Core concepts

1. Data connectors - Load documents

from llama_index.core import SimpleDirectoryReader, Document
from llama_index.readers.web import SimpleWebPageReader
from llama_index.readers.github import GithubRepositoryReader

# Directory of files
documents = SimpleDirectoryReader("./data").load_data()

# Web pages
reader = SimpleWebPageReader()
documents = reader.load_data(["https://example.com"])

# GitHub repository
reader = GithubRepositoryReader(owner="user", repo="repo")
documents = reader.load_data(branch="main")

# Manual document creation
doc = Document(
    text="This is the document content",
    metadata={"source": "manual", "date": "2025-01-01"}
)

2. Indices - Structure data

from llama_index.core import VectorStoreIndex, ListIndex, TreeIndex

# Vector index (most common - semantic search)
vector_index = VectorStoreIndex.from_documents(documents)

# List index (sequential scan)
list_index = ListIndex.from_documents(documents)

# Tree index (hierarchical summary)
tree_index = TreeIndex.from_documents(documents)

# Save index
index.storage_context.persist(persist_dir="./storage")

# Load index
from llama_index.core import load_index_from_storage, StorageContext
storage_context = StorageContext.from_defaults(persist_dir="./storage")
index = load_index_from_storage(storage_context)

3. Query engines - Ask questions

# Basic query
query_engine = index.as_query_engine()
response = query_engine.query("What is the main topic?")
print(response)

# Streaming response
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query("Explain quantum computing")
for text in response.response_gen:
    print(text, end="", flush=True)

# Custom configuration
query_engine = index.as_query_engine(
    similarity_top_k=3,          # Return top 3 chunks
    response_mode="compact",     # Or "tree_summarize", "simple_summarize"
    verbose=True
)

4. Retrievers - Find relevant chunks

# Vector retriever
retriever = index.as_retriever(similarity_top_k=5)
nodes = retriever.retrieve("machine learning")

# With filtering
retriever = index.as_retriever(
    similarity_top_k=3,
    filters={"metadata.category": "tutorial"}
)

# Custom retriever
from llama_index.core.retrievers import BaseRetriever

class CustomRetriever(BaseRetriever):
    def _retrieve(self, query_bundle):
        # Your custom retrieval logic
        return nodes

Agents with tools

Basic agent

from llama_index.core.agent import FunctionAgent
from llama_index.llms.openai import OpenAI

# Define tools
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

def add(a: int, b: int) -> int:
    """Add two numbers."""
    return a + b

# Create agent
llm = OpenAI(model="gpt-4o")
agent = FunctionAgent.from_tools(
    tools=[multiply, add],
    llm=llm,
    verbose=True
)

# Use agent
response = agent.chat("What is 25 * 17 + 142?")
print(response)

RAG agent (document search + tools)

from llama_index.core.tools import QueryEngineTool

# Create index as before
index = VectorStoreIndex.from_documents(documents)

# Wrap query engine as tool
query_tool = QueryEngineTool.from_defaults(
    query_engine=index.as_query_engine(),
    name="python_docs",
    description="Useful for answering questions about Python programming"
)

# Agent with document search + calculator
agent = FunctionAgent.from_tools(
    tools=[query_tool, multiply, add],
    llm=llm
)

# Agent decides when to search docs vs calculate
response = agent.chat("According to the docs, what is Python used for?")

Advanced RAG patterns

Chat engine (conversational)

from llama_index.core.chat_engine import CondensePlusContextChatEngine

# Chat with memory
chat_engine = index.as_chat_engine(
    chat_mode="condense_plus_context",  # Or "context", "react"
    verbose=True
)

# Multi-turn conversation
response1 = chat_engine.chat("What is Python?")
response2 = chat_engine.chat("Can you give examples?")  # Remembers context
response3 = chat_engine.chat("What about web frameworks?")

Metadata filtering

from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter

# Filter by metadata
filters = MetadataFilters(
    filters=[
        ExactMatchFilter(key="category", value="tutorial"),
        ExactMatchFilter(key="difficulty", value="beginner")
    ]
)

retriever = index.as_retriever(
    similarity_top_k=3,
    filters=filters
)

query_engine = index.as_query_engine(filters=filters)

Structured output

from pydantic import BaseModel
from llama_index.core.output_parsers import PydanticOutputParser

class Summary(BaseModel):
    title: str
    main_points: list[str]
    conclusion: str

# Get structured response
output_parser = PydanticOutputParser(output_cls=Summary)
query_engine = index.as_query_engine(output_parser=output_parser)

response = query_engine.query("Summarize the document")
summary = response  # Pydantic model
print(summary.title, summary.main_points)

Data ingestion patterns

Multiple file types

# Load all supported formats
documents = SimpleDirectoryReader(
    "./data",
    recursive=True,
    required_exts=[".pdf", ".docx", ".txt", ".md"]
).load_data()

Web scraping

from llama_index.readers.web import BeautifulSoupWebReader

reader = BeautifulSoupWebReader()
documents = reader.load_data(urls=[
    "https://docs.python.org/3/tutorial/",
    "https://docs.python.org/3/library/"
])

Database

from llama_index.readers.database import DatabaseReader

reader = DatabaseReader(
    sql_database_uri="postgresql://user:pass@localhost/db"
)
documents = reader.load_data(query="SELECT * FROM articles")

API endpoints

from llama_index.readers.json import JSONReader

reader = JSONReader()
documents = reader.load_data("https://api.example.com/data.json")

Vector store integrations

Chroma (local)

from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb

# Initialize Chroma
db = chromadb.PersistentClient(path="./chroma_db")
collection = db.get_or_create_collection("my_collection")

# Create vector store
vector_store = ChromaVectorStore(chroma_collection=collection)

# Use in index
from llama_index.core import StorageContext
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)

Pinecone (cloud)

from llama_index.vector_stores.pinecone import PineconeVectorStore
import pinecone

# Initialize Pinecone
pinecone.init(api_key="your-key", environment="us-west1-gcp")
pinecone_index = pinecone.Index("my-index")

# Create vector store
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)

FAISS (fast)

from llama_index.vector_stores.faiss import FaissVectorStore
import faiss

# Create FAISS index
d = 1536  # Dimension of embeddings
faiss_index = faiss.IndexFlatL2(d)

vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)

Customization

Custom LLM

from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings

# Set global LLM
Settings.llm = Anthropic(model="claude-sonnet-4-5-20250929")

# Now all queries use Anthropic
query_engine = index.as_query_engine()

Custom embeddings

from llama_index.embeddings.huggingface import HuggingFaceEmbedding

# Use HuggingFace embeddings
Settings.embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

index = VectorStoreIndex.from_documents(documents)

Custom prompt templates

from llama_index.core import PromptTemplate

qa_prompt = PromptTemplate(
    "Context: {context_str}\n"
    "Question: {query_str}\n"
    "Answer the question based only on the context. "
    "If the answer is not in the context, say 'I don't know'.\n"
    "Answer: "
)

query_engine = index.as_query_engine(text_qa_template=qa_prompt)

Multi-modal RAG

Image + text

from llama_index.core import SimpleDirectoryReader
from llama_index.multi_modal_llms.openai import OpenAIMultiModal

# Load images and documents
documents = SimpleDirectoryReader(
    "./data",
    required_exts=[".jpg", ".png", ".pdf"]
).load_data()

# Multi-modal index
index = VectorStoreIndex.from_documents(documents)

# Query with multi-modal LLM
multi_modal_llm = OpenAIMultiModal(model="gpt-4o")
query_engine = index.as_query_engine(llm=multi_modal_llm)

response = query_engine.query("What is in the diagram on page 3?")

Evaluation

Response quality

from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator

# Evaluate relevance
relevancy = RelevancyEvaluator()
result = relevancy.evaluate_response(
    query="What is Python?",
    response=response
)
print(f"Relevancy: {result.passing}")

# Evaluate faithfulness (no hallucination)
faithfulness = FaithfulnessEvaluator()
result = faithfulness.evaluate_response(
    query="What is Python?",
    response=response
)
print(f"Faithfulness: {result.passing}")

Best practices

  1. Use vector indices for most cases - Best performance
  2. Save indices to disk - Avoid re-indexing
  3. Chunk documents properly - 512-1024 tokens optimal
  4. Add metadata - Enables filtering and tracking
  5. Use streaming - Better UX for long responses
  6. Enable verbose during dev - See retrieval process
  7. Evaluate responses - Check relevance and faithfulness
  8. Use chat engine for conversations - Built-in memory
  9. Persist storage - Don't lose your index
  10. Monitor costs - Track embedding and LLM usage

Common patterns

Document Q&A system

# Complete RAG pipeline
documents = SimpleDirectoryReader("docs").load_data()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir="./storage")

# Query
query_engine = index.as_query_engine(
    similarity_top_k=3,
    response_mode="compact",
    verbose=True
)
response = query_engine.query("What is the main topic?")
print(response)
print(f"Sources: {[node.metadata['file_name'] for node in response.source_nodes]}")

Chatbot with memory

# Conversational interface
chat_engine = index.as_chat_engine(
    chat_mode="condense_plus_context",
    verbose=True
)

# Multi-turn chat
while True:
    user_input = input("You: ")
    if user_input.lower() == "quit":
        break
    response = chat_engine.chat(user_input)
    print(f"Bot: {response}")

Performance benchmarks

OperationLatencyNotes
Index 100 docs~10-30sOne-time, can persist
Query (vector)~0.5-2sRetrieval + LLM
Streaming query~0.5s first tokenBetter UX
Agent with tools~3-8sMultiple tool calls

LlamaIndex vs LangChain

FeatureLlamaIndexLangChain
Best forRAG, document Q&AAgents, general LLM apps
Data connectors300+ (LlamaHub)100+
RAG focusCore featureOne of many
Learning curveEasier for RAGSteeper
CustomizationHighVery high
DocumentationExcellentGood

Use LlamaIndex when:

  • Your primary use case is RAG
  • Need many data connectors
  • Want simpler API for document Q&A
  • Building knowledge retrieval system

Use LangChain when:

  • Building complex agents
  • Need more general-purpose tools
  • Want more flexibility
  • Complex multi-step workflows

References

Resources

快速安装

/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLs/tree/main/llamaindex

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

zechenzhangAGI/AI-research-SKILLs
路径: 14-agents/llamaindex
aiai-researchclaudeclaude-codeclaude-skillscodex

相关推荐技能

llamaguard

其他

LlamaGuard是Meta推出的7-8B参数内容审核模型,专门用于过滤LLM的输入和输出内容。它能检测六大安全风险类别(暴力/仇恨、性内容、武器、违禁品、自残、犯罪计划),准确率达94-95%。开发者可通过HuggingFace、vLLM或Sagemaker快速部署,并能与NeMo Guardrails集成实现自动化安全防护。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

langchain

LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能