AgentDB Memory Patterns
关于
This skill provides persistent memory patterns for AI agents using AgentDB, enabling session memory, long-term storage, and context management. Use it when building stateful agents, chat systems, or intelligent assistants that need to remember conversations and learn from interactions. It offers significant performance improvements over traditional solutions while maintaining full backward compatibility.
快速安装
Claude Code
推荐/plugin add https://github.com/proffesor-for-testing/agentic-qegit clone https://github.com/proffesor-for-testing/agentic-qe.git ~/.claude/skills/AgentDB Memory Patterns在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
AgentDB Memory Patterns
What This Skill Does
Provides memory management patterns for AI agents using AgentDB's persistent storage and ReasoningBank integration. Enables agents to remember conversations, learn from interactions, and maintain context across sessions.
Performance: 150x-12,500x faster than traditional solutions with 100% backward compatibility.
Prerequisites
- Node.js 18+
- AgentDB v1.0.7+ (via agentic-flow or standalone)
- Understanding of agent architectures
Quick Start with CLI
Initialize AgentDB
# Initialize vector database
npx agentdb@latest init ./agents.db
# Or with custom dimensions
npx agentdb@latest init ./agents.db --dimension 768
# Use preset configurations
npx agentdb@latest init ./agents.db --preset large
# In-memory database for testing
npx agentdb@latest init ./memory.db --in-memory
Start MCP Server for Claude Code
# Start MCP server (integrates with Claude Code)
npx agentdb@latest mcp
# Add to Claude Code (one-time setup)
claude mcp add agentdb npx agentdb@latest mcp
Create Learning Plugin
# Interactive plugin wizard
npx agentdb@latest create-plugin
# Use template directly
npx agentdb@latest create-plugin -t decision-transformer -n my-agent
# Available templates:
# - decision-transformer (sequence modeling RL)
# - q-learning (value-based learning)
# - sarsa (on-policy TD learning)
# - actor-critic (policy gradient)
# - curiosity-driven (exploration-based)
Quick Start with API
import { createAgentDBAdapter } from 'agentic-flow/reasoningbank';
// Initialize with default configuration
const adapter = await createAgentDBAdapter({
dbPath: '.agentdb/reasoningbank.db',
enableLearning: true, // Enable learning plugins
enableReasoning: true, // Enable reasoning agents
quantizationType: 'scalar', // binary | scalar | product | none
cacheSize: 1000, // In-memory cache
});
// Store interaction memory
const patternId = await adapter.insertPattern({
id: '',
type: 'pattern',
domain: 'conversation',
pattern_data: JSON.stringify({
embedding: await computeEmbedding('What is the capital of France?'),
pattern: {
user: 'What is the capital of France?',
assistant: 'The capital of France is Paris.',
timestamp: Date.now()
}
}),
confidence: 0.95,
usage_count: 1,
success_count: 1,
created_at: Date.now(),
last_used: Date.now(),
});
// Retrieve context with reasoning
const context = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'conversation',
k: 10,
useMMR: true, // Maximal Marginal Relevance
synthesizeContext: true, // Generate rich context
});
Memory Patterns
1. Session Memory
class SessionMemory {
async storeMessage(role: string, content: string) {
return await db.storeMemory({
sessionId: this.sessionId,
role,
content,
timestamp: Date.now()
});
}
async getSessionHistory(limit = 20) {
return await db.query({
filters: { sessionId: this.sessionId },
orderBy: 'timestamp',
limit
});
}
}
2. Long-Term Memory
// Store important facts
await db.storeFact({
category: 'user_preference',
key: 'language',
value: 'English',
confidence: 1.0,
source: 'explicit'
});
// Retrieve facts
const prefs = await db.getFacts({
category: 'user_preference'
});
3. Pattern Learning
// Learn from successful interactions
await db.storePattern({
trigger: 'user_asks_time',
response: 'provide_formatted_time',
success: true,
context: { timezone: 'UTC' }
});
// Apply learned patterns
const pattern = await db.matchPattern(currentContext);
Advanced Patterns
Hierarchical Memory
// Organize memory in hierarchy
await memory.organize({
immediate: recentMessages, // Last 10 messages
shortTerm: sessionContext, // Current session
longTerm: importantFacts, // Persistent facts
semantic: embeddedKnowledge // Vector search
});
Memory Consolidation
// Periodically consolidate memories
await memory.consolidate({
strategy: 'importance', // Keep important memories
maxSize: 10000, // Size limit
minScore: 0.5 // Relevance threshold
});
CLI Operations
Query Database
# Query with vector embedding
npx agentdb@latest query ./agents.db "[0.1,0.2,0.3,...]"
# Top-k results
npx agentdb@latest query ./agents.db "[0.1,0.2,0.3]" -k 10
# With similarity threshold
npx agentdb@latest query ./agents.db "0.1 0.2 0.3" -t 0.75
# JSON output
npx agentdb@latest query ./agents.db "[...]" -f json
Import/Export Data
# Export vectors to file
npx agentdb@latest export ./agents.db ./backup.json
# Import vectors from file
npx agentdb@latest import ./backup.json
# Get database statistics
npx agentdb@latest stats ./agents.db
Performance Benchmarks
# Run performance benchmarks
npx agentdb@latest benchmark
# Results show:
# - Pattern Search: 150x faster (100µs vs 15ms)
# - Batch Insert: 500x faster (2ms vs 1s)
# - Large-scale Query: 12,500x faster (8ms vs 100s)
Integration with ReasoningBank
import { createAgentDBAdapter, migrateToAgentDB } from 'agentic-flow/reasoningbank';
// Migrate from legacy ReasoningBank
const result = await migrateToAgentDB(
'.swarm/memory.db', // Source (legacy)
'.agentdb/reasoningbank.db' // Destination (AgentDB)
);
console.log(`✅ Migrated ${result.patternsMigrated} patterns`);
// Train learning model
const adapter = await createAgentDBAdapter({
enableLearning: true,
});
await adapter.train({
epochs: 50,
batchSize: 32,
});
// Get optimal strategy with reasoning
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
domain: 'task-planning',
synthesizeContext: true,
optimizeMemory: true,
});
Learning Plugins
Available Algorithms (9 Total)
- Decision Transformer - Sequence modeling RL (recommended)
- Q-Learning - Value-based learning
- SARSA - On-policy TD learning
- Actor-Critic - Policy gradient with baseline
- Active Learning - Query selection
- Adversarial Training - Robustness
- Curriculum Learning - Progressive difficulty
- Federated Learning - Distributed learning
- Multi-task Learning - Transfer learning
List and Manage Plugins
# List available plugins
npx agentdb@latest list-plugins
# List plugin templates
npx agentdb@latest list-templates
# Get plugin info
npx agentdb@latest plugin-info <name>
Reasoning Agents (4 Modules)
- PatternMatcher - Find similar patterns with HNSW indexing
- ContextSynthesizer - Generate rich context from multiple sources
- MemoryOptimizer - Consolidate similar patterns, prune low-quality
- ExperienceCurator - Quality-based experience filtering
Best Practices
- Enable quantization: Use scalar/binary for 4-32x memory reduction
- Use caching: 1000 pattern cache for <1ms retrieval
- Batch operations: 500x faster than individual inserts
- Train regularly: Update learning models with new experiences
- Enable reasoning: Automatic context synthesis and optimization
- Monitor metrics: Use
statscommand to track performance
Troubleshooting
Issue: Memory growing too large
# Check database size
npx agentdb@latest stats ./agents.db
# Enable quantization
# Use 'binary' (32x smaller) or 'scalar' (4x smaller)
Issue: Slow search performance
# Enable HNSW indexing and caching
# Results: <100µs search time
Issue: Migration from legacy ReasoningBank
# Automatic migration with validation
npx agentdb@latest migrate --source .swarm/memory.db
Performance Characteristics
- Vector Search: <100µs (HNSW indexing)
- Pattern Retrieval: <1ms (with cache)
- Batch Insert: 2ms for 100 patterns
- Memory Efficiency: 4-32x reduction with quantization
- Backward Compatibility: 100% compatible with ReasoningBank API
Learn More
- GitHub: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
- Documentation: node_modules/agentic-flow/docs/AGENTDB_INTEGRATION.md
- MCP Integration:
npx agentdb@latest mcpfor Claude Code - Website: https://agentdb.ruv.io
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
