MCP HubMCP Hub
返回技能列表

Building Terraform Modules

jeremylongshore
更新于 Today
92 次查看
1,053
135
1,053
在 GitHub 上查看
wordaidesign

关于

This skill enables Claude to generate production-ready, reusable Terraform modules from user specifications. It uses a dedicated plugin to create well-documented code that follows best practices for security and scalability. Use it when you need to create a new Terraform module, generate IaC configuration, or structure infrastructure code.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/Building Terraform Modules

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill allows Claude to efficiently generate Terraform modules, streamlining infrastructure-as-code development. By utilizing the terraform-module-builder plugin, it ensures modules are production-ready, well-documented, and incorporate best practices.

How It Works

  1. Receiving User Request: Claude receives a request to create a Terraform module, including details about the module's purpose and desired features.
  2. Generating Module Structure: Claude invokes the terraform-module-builder plugin to create the basic file structure and configuration files for the module.
  3. Customizing Module Content: Claude uses the user's specifications to populate the module with variables, outputs, and resource definitions, ensuring best practices are followed.

When to Use This Skill

This skill activates when you need to:

  • Create a new Terraform module from scratch.
  • Generate production-ready Terraform configuration files.
  • Implement infrastructure as code using Terraform modules.

Examples

Example 1: Creating a VPC Module

User request: "Create a Terraform module for a VPC with public and private subnets, a NAT gateway, and appropriate security groups."

The skill will:

  1. Invoke the terraform-module-builder plugin to generate a basic VPC module structure.
  2. Populate the module with Terraform code to define the VPC, subnets, NAT gateway, and security groups based on best practices.

Example 2: Generating an S3 Bucket Module

User request: "Generate a Terraform module for an S3 bucket with versioning enabled, encryption at rest, and a lifecycle policy for deleting objects after 30 days."

The skill will:

  1. Invoke the terraform-module-builder plugin to create a basic S3 bucket module structure.
  2. Populate the module with Terraform code to define the S3 bucket with the requested features (versioning, encryption, lifecycle policy).

Best Practices

  • Documentation: Ensure the generated Terraform module includes comprehensive documentation, explaining the module's purpose, inputs, and outputs.
  • Security: Implement security best practices, such as using least privilege principles and encrypting sensitive data.
  • Modularity: Design the Terraform module to be reusable and configurable, allowing it to be easily adapted to different environments.

Integration

This skill integrates seamlessly with other Claude Code plugins by providing a foundation for infrastructure provisioning. The generated Terraform modules can be used by other plugins to deploy and manage resources in various cloud environments.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
路径: backups/plugin-enhancements/plugin-backups/terraform-module-builder_20251020_065741/skills/skill-adapter
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能