tracking-resource-usage
关于
This skill enables Claude to monitor application resource consumption like CPU, memory, and I/O to identify performance bottlenecks and cost optimization opportunities. It activates when users request insights on resource usage, performance, or right-sizing. The skill uses a dedicated plugin to track key metrics and provide actionable optimization strategies.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/tracking-resource-usage在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill provides a comprehensive solution for monitoring and optimizing resource usage within an application. It leverages the resource-usage-tracker plugin to gather real-time metrics, identify performance bottlenecks, and suggest optimization strategies.
How It Works
- Identify Resources: The skill identifies the resources to be tracked based on the user's request and the application's configuration (CPU, memory, disk I/O, network I/O, etc.).
- Collect Metrics: The plugin collects real-time metrics for the identified resources, providing a snapshot of current resource consumption.
- Analyze Data: The skill analyzes the collected data to identify performance bottlenecks, resource imbalances, and potential optimization opportunities.
- Provide Recommendations: Based on the analysis, the skill provides specific recommendations for optimizing resource allocation, right-sizing instances, and reducing costs.
When to Use This Skill
This skill activates when you need to:
- Identify performance bottlenecks in an application.
- Optimize resource allocation to improve efficiency.
- Reduce cloud infrastructure costs by right-sizing instances.
- Monitor resource usage in real-time to detect anomalies.
- Track the impact of code changes on resource consumption.
Examples
Example 1: Identifying Memory Leaks
User request: "Track memory usage and identify potential memory leaks."
The skill will:
- Activate the resource-usage-tracker plugin to monitor memory usage (heap, stack, RSS).
- Analyze the memory usage data over time to detect patterns indicative of memory leaks.
- Provide recommendations for identifying and resolving the memory leaks.
Example 2: Optimizing Database Connection Pool
User request: "Optimize database connection pool utilization."
The skill will:
- Activate the resource-usage-tracker plugin to monitor database connection pool metrics.
- Analyze the connection pool utilization data to identify periods of high contention or underutilization.
- Provide recommendations for adjusting the connection pool size to optimize performance and resource consumption.
Best Practices
- Granularity: Track resource usage at a granular level (e.g., process-level CPU usage) to identify specific bottlenecks.
- Historical Data: Analyze historical resource usage data to identify trends and predict future resource needs.
- Alerting: Configure alerts to notify you when resource usage exceeds predefined thresholds.
Integration
This skill can be integrated with other monitoring and alerting tools to provide a comprehensive view of application performance. It can also be used in conjunction with deployment automation tools to automatically right-size instances based on resource usage patterns.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
