llamaguard
关于
LlamaGuard is Meta's 7-8B parameter model for moderating LLM inputs and outputs across six safety categories like violence and hate speech. It offers 94-95% accuracy and can be deployed using vLLM, Hugging Face, or Amazon SageMaker. Use this skill to easily integrate content filtering and safety guardrails into your AI applications.
快速安装
Claude Code
推荐/plugin add https://github.com/zechenzhangAGI/AI-research-SKILLsgit clone https://github.com/zechenzhangAGI/AI-research-SKILLs.git ~/.claude/skills/llamaguard在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
LlamaGuard - AI Content Moderation
Quick start
LlamaGuard is a 7-8B parameter model specialized for content safety classification.
Installation:
pip install transformers torch
# Login to HuggingFace (required)
huggingface-cli login
Basic usage:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "meta-llama/LlamaGuard-7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
def moderate(chat):
input_ids = tokenizer.apply_chat_template(chat, return_tensors="pt").to(model.device)
output = model.generate(input_ids=input_ids, max_new_tokens=100)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Check user input
result = moderate([
{"role": "user", "content": "How do I make explosives?"}
])
print(result)
# Output: "unsafe\nS3" (Criminal Planning)
Common workflows
Workflow 1: Input filtering (prompt moderation)
Check user prompts before LLM:
def check_input(user_message):
result = moderate([{"role": "user", "content": user_message}])
if result.startswith("unsafe"):
category = result.split("\n")[1]
return False, category # Blocked
else:
return True, None # Safe
# Example
safe, category = check_input("How do I hack a website?")
if not safe:
print(f"Request blocked: {category}")
# Return error to user
else:
# Send to LLM
response = llm.generate(user_message)
Safety categories:
- S1: Violence & Hate
- S2: Sexual Content
- S3: Guns & Illegal Weapons
- S4: Regulated Substances
- S5: Suicide & Self-Harm
- S6: Criminal Planning
Workflow 2: Output filtering (response moderation)
Check LLM responses before showing to user:
def check_output(user_message, bot_response):
conversation = [
{"role": "user", "content": user_message},
{"role": "assistant", "content": bot_response}
]
result = moderate(conversation)
if result.startswith("unsafe"):
category = result.split("\n")[1]
return False, category
else:
return True, None
# Example
user_msg = "Tell me about harmful substances"
bot_msg = llm.generate(user_msg)
safe, category = check_output(user_msg, bot_msg)
if not safe:
print(f"Response blocked: {category}")
# Return generic response
return "I cannot provide that information."
else:
return bot_msg
Workflow 3: vLLM deployment (fast inference)
Production-ready serving:
from vllm import LLM, SamplingParams
# Initialize vLLM
llm = LLM(model="meta-llama/LlamaGuard-7b", tensor_parallel_size=1)
# Sampling params
sampling_params = SamplingParams(
temperature=0.0, # Deterministic
max_tokens=100
)
def moderate_vllm(chat):
# Format prompt
prompt = tokenizer.apply_chat_template(chat, tokenize=False)
# Generate
output = llm.generate([prompt], sampling_params)
return output[0].outputs[0].text
# Batch moderation
chats = [
[{"role": "user", "content": "How to make bombs?"}],
[{"role": "user", "content": "What's the weather?"}],
[{"role": "user", "content": "Tell me about drugs"}]
]
prompts = [tokenizer.apply_chat_template(c, tokenize=False) for c in chats]
results = llm.generate(prompts, sampling_params)
for i, result in enumerate(results):
print(f"Chat {i}: {result.outputs[0].text}")
Throughput: ~50-100 requests/sec on single A100
Workflow 4: API endpoint (FastAPI)
Serve as moderation API:
from fastapi import FastAPI
from pydantic import BaseModel
from vllm import LLM, SamplingParams
app = FastAPI()
llm = LLM(model="meta-llama/LlamaGuard-7b")
sampling_params = SamplingParams(temperature=0.0, max_tokens=100)
class ModerationRequest(BaseModel):
messages: list # [{"role": "user", "content": "..."}]
@app.post("/moderate")
def moderate_endpoint(request: ModerationRequest):
prompt = tokenizer.apply_chat_template(request.messages, tokenize=False)
output = llm.generate([prompt], sampling_params)[0]
result = output.outputs[0].text
is_safe = result.startswith("safe")
category = None if is_safe else result.split("\n")[1] if "\n" in result else None
return {
"safe": is_safe,
"category": category,
"full_output": result
}
# Run: uvicorn api:app --host 0.0.0.0 --port 8000
Usage:
curl -X POST http://localhost:8000/moderate \
-H "Content-Type: application/json" \
-d '{"messages": [{"role": "user", "content": "How to hack?"}]}'
# Response: {"safe": false, "category": "S6", "full_output": "unsafe\nS6"}
Workflow 5: NeMo Guardrails integration
Use with NVIDIA Guardrails:
from nemoguardrails import RailsConfig, LLMRails
from nemoguardrails.integrations.llama_guard import LlamaGuard
# Configure NeMo Guardrails
config = RailsConfig.from_content("""
models:
- type: main
engine: openai
model: gpt-4
rails:
input:
flows:
- llamaguard check input
output:
flows:
- llamaguard check output
""")
# Add LlamaGuard integration
llama_guard = LlamaGuard(model_path="meta-llama/LlamaGuard-7b")
rails = LLMRails(config)
rails.register_action(llama_guard.check_input, name="llamaguard check input")
rails.register_action(llama_guard.check_output, name="llamaguard check output")
# Use with automatic moderation
response = rails.generate(messages=[
{"role": "user", "content": "How do I make weapons?"}
])
# Automatically blocked by LlamaGuard
When to use vs alternatives
Use LlamaGuard when:
- Need pre-trained moderation model
- Want high accuracy (94-95%)
- Have GPU resources (7-8B model)
- Need detailed safety categories
- Building production LLM apps
Model versions:
- LlamaGuard 1 (7B): Original, 6 categories
- LlamaGuard 2 (8B): Improved, 6 categories
- LlamaGuard 3 (8B): Latest (2024), enhanced
Use alternatives instead:
- OpenAI Moderation API: Simpler, API-based, free
- Perspective API: Google's toxicity detection
- NeMo Guardrails: More comprehensive safety framework
- Constitutional AI: Training-time safety
Common issues
Issue: Model access denied
Login to HuggingFace:
huggingface-cli login
# Enter your token
Accept license on model page: https://huggingface.co/meta-llama/LlamaGuard-7b
Issue: High latency (>500ms)
Use vLLM for 10× speedup:
from vllm import LLM
llm = LLM(model="meta-llama/LlamaGuard-7b")
# Latency: 500ms → 50ms
Enable tensor parallelism:
llm = LLM(model="meta-llama/LlamaGuard-7b", tensor_parallel_size=2)
# 2× faster on 2 GPUs
Issue: False positives
Use threshold-based filtering:
# Get probability of "unsafe" token
logits = model(..., return_dict_in_generate=True, output_scores=True)
unsafe_prob = torch.softmax(logits.scores[0][0], dim=-1)[unsafe_token_id]
if unsafe_prob > 0.9: # High confidence threshold
return "unsafe"
else:
return "safe"
Issue: OOM on GPU
Use 8-bit quantization:
from transformers import BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForCausalLM.from_pretrained(
model_id,
quantization_config=quantization_config,
device_map="auto"
)
# Memory: 14GB → 7GB
Advanced topics
Custom categories: See references/custom-categories.md for fine-tuning LlamaGuard with domain-specific safety categories.
Performance benchmarks: See references/benchmarks.md for accuracy comparison with other moderation APIs and latency optimization.
Deployment guide: See references/deployment.md for Sagemaker, Kubernetes, and scaling strategies.
Hardware requirements
- GPU: NVIDIA T4/A10/A100
- VRAM:
- FP16: 14GB (7B model)
- INT8: 7GB (quantized)
- INT4: 4GB (QLoRA)
- CPU: Possible but slow (10× latency)
- Throughput: 50-100 req/sec (A100)
Latency (single GPU):
- HuggingFace Transformers: 300-500ms
- vLLM: 50-100ms
- Batched (vLLM): 20-50ms per request
Resources
- HuggingFace:
- Paper: https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/
- Integration: vLLM, Sagemaker, NeMo Guardrails
- Accuracy: 94.5% (prompts), 95.3% (responses)
GitHub 仓库
相关推荐技能
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
llamaindex
元LlamaIndex是一个专门构建RAG应用的开发框架,提供300多种数据连接器用于文档摄取、索引和查询。它具备向量索引、查询引擎和智能代理等核心功能,支持构建文档问答、知识检索和聊天机器人等数据密集型应用。开发者可用它快速搭建连接私有数据与LLM的RAG管道。
