MCP HubMCP Hub
返回技能列表

Detecting SQL Injection Vulnerabilities

jeremylongshore
更新于 Today
74 次查看
1,053
135
1,053
在 GitHub 上查看
aidesign

关于

This skill enables Claude to detect SQL injection vulnerabilities in code using a dedicated plugin to analyze codebases and identify flaws. It provides remediation guidance and is triggered by requests to scan for SQLi or check code for injection risks. Use it to proactively find and fix these security vulnerabilities in your applications.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus-skills
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus-skills.git ~/.claude/skills/Detecting SQL Injection Vulnerabilities

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to proactively identify and address SQL injection vulnerabilities within a codebase. By leveraging the sql-injection-detector plugin, Claude can perform comprehensive scans, pinpoint potential security flaws, and offer actionable recommendations to mitigate risks. This ensures more secure and robust applications.

How It Works

  1. Initiate Scan: Upon receiving a relevant request, Claude activates the sql-injection-detector plugin.
  2. Code Analysis: The plugin analyzes the codebase, examining code patterns, input vectors, and query contexts.
  3. Vulnerability Identification: The plugin identifies potential SQL injection vulnerabilities, categorizing them by severity.
  4. Report Generation: A detailed report is generated, outlining the identified vulnerabilities, their locations, and recommended remediation steps.

When to Use This Skill

This skill activates when you need to:

  • Audit a codebase for SQL injection vulnerabilities.
  • Secure a web application against SQL injection attacks.
  • Review code changes for potential SQL injection risks.
  • Understand how SQL injection vulnerabilities occur and how to prevent them.

Examples

Example 1: Securing a Web Application

User request: "Scan my web application for SQL injection vulnerabilities."

The skill will:

  1. Activate the sql-injection-detector plugin.
  2. Scan the web application's codebase for potential SQL injection flaws.
  3. Generate a report detailing any identified vulnerabilities, their severity, and remediation recommendations.

Example 2: Reviewing Code Changes

User request: "Check these code changes for potential SQL injection risks."

The skill will:

  1. Activate the sql-injection-detector plugin.
  2. Analyze the provided code changes for potential SQL injection vulnerabilities.
  3. Provide feedback on the security implications of the changes and suggest improvements.

Best Practices

  • Input Validation: Always validate and sanitize user inputs to prevent malicious data from entering the system.
  • Parameterized Queries: Utilize parameterized queries or prepared statements to prevent SQL injection attacks.
  • Least Privilege: Grant database users only the necessary privileges to minimize the impact of a potential SQL injection attack.

Integration

This skill integrates seamlessly with other code analysis and security plugins within the Claude Code ecosystem. It can be used in conjunction with static analysis tools, dynamic testing frameworks, and vulnerability management systems to provide a comprehensive security solution.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus-skills
路径: backups/plugin-enhancements/plugin-backups/sql-injection-detector_20251019_121248/skills/skill-adapter
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能