MCP HubMCP Hub
返回技能列表

tracking-application-response-times

jeremylongshore
更新于 Today
53 次查看
712
74
712
在 GitHub 上查看
aiapidata

关于

This skill tracks application response times across APIs, databases, and services using a plugin that calculates key percentiles and metrics. Use it to identify performance bottlenecks, monitor SLOs, and receive alerts for degradation. Trigger it with phrases like "track response times" or "optimize latency" when you need to analyze and improve application performance.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/jeremylongshore/claude-code-plugins-plus
Git 克隆备选方式
git clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/tracking-application-response-times

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Overview

This skill empowers Claude to proactively monitor and improve application performance by tracking response times across various layers. It provides detailed metrics and insights to identify and resolve performance bottlenecks.

How It Works

  1. Initiate Tracking: The user requests response time tracking.
  2. Configure Monitoring: The plugin automatically begins monitoring API endpoints, database queries, external service calls, frontend rendering, and background jobs.
  3. Report Metrics: The plugin generates reports including P50, P95, P99 percentiles, average, and maximum response times.

When to Use This Skill

This skill activates when you need to:

  • Identify performance bottlenecks in your application.
  • Monitor service level objectives (SLOs) related to response times.
  • Receive alerts about performance degradation.

Examples

Example 1: Diagnosing Slow API Endpoint

User request: "Track response times for the user authentication API endpoint."

The skill will:

  1. Activate the response-time-tracker plugin.
  2. Monitor the specified API endpoint and report response time metrics, highlighting potential bottlenecks.

Example 2: Monitoring Database Query Performance

User request: "Monitor database query performance for the product catalog."

The skill will:

  1. Activate the response-time-tracker plugin.
  2. Track the execution time of database queries related to the product catalog and provide performance insights.

Best Practices

  • Granularity: Track response times at a granular level (e.g., individual API endpoints, specific database queries) for more precise insights.
  • Alerting: Configure alerts for significant deviations from baseline performance to proactively address potential issues.
  • Contextualization: Correlate response time data with other metrics (e.g., CPU usage, memory consumption) to identify root causes.

Integration

This skill can be integrated with other monitoring and alerting tools to provide a comprehensive view of application performance. It can also be used in conjunction with optimization tools to automatically address identified bottlenecks.

GitHub 仓库

jeremylongshore/claude-code-plugins-plus
路径: backups/skills-batch-20251204-000554/plugins/performance/response-time-tracker/skills/response-time-tracker
aiautomationclaude-codedevopsmarketplacemcp

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能