analyzing-logs
关于
This skill enables Claude to analyze application logs for debugging and performance optimization when users request log analysis or troubleshooting help. It identifies slow requests, error patterns, and resource warnings to detect bottlenecks and issues. Use it to quickly extract insights from log data and improve application stability.
快速安装
Claude Code
推荐/plugin add https://github.com/jeremylongshore/claude-code-plugins-plusgit clone https://github.com/jeremylongshore/claude-code-plugins-plus.git ~/.claude/skills/analyzing-logs在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Overview
This skill empowers Claude to automatically analyze application logs, pinpoint performance bottlenecks, and identify recurring errors. It streamlines the debugging process and helps optimize application performance by extracting key insights from log data.
How It Works
- Initiate Analysis: Claude activates the log analysis tool upon detecting relevant trigger phrases.
- Log Data Extraction: The tool extracts relevant data, including timestamps, request durations, error messages, and resource usage metrics.
- Pattern Identification: The tool identifies patterns such as slow requests, frequent errors, and resource exhaustion warnings.
- Report Generation: Claude presents a summary of findings, highlighting potential performance issues and optimization opportunities.
When to Use This Skill
This skill activates when you need to:
- Identify performance bottlenecks in an application.
- Debug recurring errors and exceptions.
- Analyze log data for trends and anomalies.
- Set up structured logging or log aggregation.
Examples
Example 1: Identifying Slow Requests
User request: "Analyze logs for slow requests."
The skill will:
- Activate the log analysis tool.
- Identify requests exceeding predefined latency thresholds.
- Present a list of slow requests with corresponding timestamps and durations.
Example 2: Detecting Error Patterns
User request: "Find error patterns in the application logs."
The skill will:
- Activate the log analysis tool.
- Scan logs for recurring error messages and exceptions.
- Group similar errors and present a summary of error frequencies.
Best Practices
- Log Level: Ensure appropriate log levels (e.g., INFO, WARN, ERROR) are used to capture relevant information.
- Structured Logging: Implement structured logging (e.g., JSON format) to facilitate efficient analysis.
- Log Rotation: Configure log rotation policies to prevent log files from growing excessively.
Integration
This skill can be integrated with other tools for monitoring and alerting. For example, it can be used in conjunction with a monitoring plugin to automatically trigger alerts based on log analysis results. It can also work with deployment tools to rollback deployments when critical errors are detected in the logs.
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
langchain
元LangChain是一个用于构建LLM应用程序的框架,支持智能体、链和RAG应用开发。它提供多模型提供商支持、500+工具集成、记忆管理和向量检索等核心功能。开发者可用它快速构建聊天机器人、问答系统和自主代理,适用于从原型验证到生产部署的全流程。
