patent-claims-analyzer
关于
This skill analyzes patent claims for USPTO compliance, specifically checking for antecedent basis and definiteness under 35 USC 112(b). Use it to automatically review claim structure, identify drafting issues like missing term introductions, and validate claims before filing. It performs automated checks across claims to flag subjective language and improper references.
快速安装
Claude Code
推荐/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creatorgit clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/patent-claims-analyzer在 Claude Code 中复制并粘贴此命令以安装该技能
技能文档
Patent Claims Analyzer Skill
Automated analysis of patent claims for USPTO compliance with 35 USC 112(b) requirements.
When to Use
Invoke this skill when users ask to:
- Review patent claims for definiteness
- Check antecedent basis in claims
- Analyze claim structure
- Find claim drafting issues
- Validate claims before filing
- Fix USPTO office action issues related to claims
What This Skill Does
Performs comprehensive automated analysis:
-
Antecedent Basis Checking:
- Finds terms used without prior introduction
- Detects missing "a/an" before first use
- Identifies improper "said/the" before first use
- Tracks term references across claims
-
Definiteness Analysis (35 USC 112(b)):
- Identifies subjective/indefinite terms
- Detects relative terms without reference
- Finds ambiguous claim language
- Checks for clear claim boundaries
-
Claim Structure Validation:
- Parses independent vs. dependent claims
- Validates claim dependencies
- Checks claim numbering
- Identifies claim type (method, system, etc.)
-
Issue Categorization:
- Critical: Must fix before filing
- Important: May cause rejection
- Minor: Best practice improvements
Required Data
This skill uses the automated claims analyzer from:
Location: ${CLAUDE_PLUGIN_ROOT}/python\claims_analyzer.py
How to Use
When this skill is invoked:
-
Load the claims analyzer:
import sys sys.path.insert(0, os.path.join(os.environ.get('CLAUDE_PLUGIN_ROOT', '.'), 'python')) from python.claims_analyzer import ClaimsAnalyzer analyzer = ClaimsAnalyzer() -
Analyze claims:
claims_text = """ 1. A system comprising: a processor; a memory; and said processor configured to... """ results = analyzer.analyze_claims(claims_text) -
Present analysis:
- Show compliance score (0-100)
- List issues by severity (critical, important, minor)
- Provide MPEP citations for each issue
- Suggest specific fixes
Analysis Output Structure
{
"claim_count": 20,
"independent_count": 3,
"dependent_count": 17,
"compliance_score": 85, # 0-100
"total_issues": 12,
"critical_issues": 2,
"important_issues": 7,
"minor_issues": 3,
"issues": [
{
"category": "antecedent_basis",
"severity": "critical",
"claim_number": 1,
"term": "said processor",
"description": "Term 'processor' used with 'said' before first introduction",
"mpep_cite": "MPEP 2173.05(e)",
"suggestion": "Change 'said processor' to 'the processor' or introduce with 'a processor' first"
},
# ... more issues
]
}
Common Issues Detected
-
Antecedent Basis Errors:
- Using "said/the" before "a/an" introduction
- Terms appearing in dependent claims not in parent
- Missing antecedent in claim body
-
Definiteness Issues:
- Subjective terms: "substantially", "about", "approximately"
- Relative terms: "large", "small", "thin"
- Ambiguous language: "and/or", "optionally"
-
Structure Issues:
- Means-plus-function without adequate structure
- Improper claim dependencies
- Missing preamble or transition
Presentation Format
Present analysis as:
CLAIMS ANALYSIS REPORT
======================
Summary:
- Total Claims: 20 (3 independent, 17 dependent)
- Compliance Score: 85/100
- Issues Found: 12 (2 critical, 7 important, 3 minor)
CRITICAL ISSUES (Must Fix):
[Claim 1] Antecedent Basis Error
Issue: Term 'processor' used with 'said' before introduction
Location: "said processor configured to..."
MPEP: 2173.05(e)
Fix: Change to 'the processor' or introduce with 'a processor' first
[Claim 5] Indefinite Term
Issue: Subjective term 'substantially' without definition
Location: "substantially similar to..."
MPEP: 2173.05(b)
Fix: Define 'substantially' in specification or use objective criteria
IMPORTANT ISSUES:
...
MINOR ISSUES:
...
Integration with MPEP
For each issue, the skill can:
- Search MPEP for relevant guidance
- Provide specific MPEP section citations
- Show examiner guidance on similar issues
- Suggest fixes based on USPTO practice
Tools Available
- Read: To load claims from files
- Bash: To run Python analyzer
- Write: To save analysis reports
GitHub 仓库
相关推荐技能
content-collections
元Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。
creating-opencode-plugins
元该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。
sglang
元SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。
evaluating-llms-harness
测试该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。
