MCP HubMCP Hub
返回技能列表

patent-claims-analyzer

RobThePCGuy
更新于 Today
83 次查看
2
2
在 GitHub 上查看
设计aiautomationdesign

关于

This skill analyzes patent claims for USPTO compliance, specifically checking for antecedent basis and definiteness under 35 USC 112(b). Use it to automatically review claim structure, identify drafting issues like missing term introductions, and validate claims before filing. It performs automated checks across claims to flag subjective language and improper references.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator
Git 克隆备选方式
git clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/patent-claims-analyzer

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Patent Claims Analyzer Skill

Automated analysis of patent claims for USPTO compliance with 35 USC 112(b) requirements.

When to Use

Invoke this skill when users ask to:

  • Review patent claims for definiteness
  • Check antecedent basis in claims
  • Analyze claim structure
  • Find claim drafting issues
  • Validate claims before filing
  • Fix USPTO office action issues related to claims

What This Skill Does

Performs comprehensive automated analysis:

  1. Antecedent Basis Checking:

    • Finds terms used without prior introduction
    • Detects missing "a/an" before first use
    • Identifies improper "said/the" before first use
    • Tracks term references across claims
  2. Definiteness Analysis (35 USC 112(b)):

    • Identifies subjective/indefinite terms
    • Detects relative terms without reference
    • Finds ambiguous claim language
    • Checks for clear claim boundaries
  3. Claim Structure Validation:

    • Parses independent vs. dependent claims
    • Validates claim dependencies
    • Checks claim numbering
    • Identifies claim type (method, system, etc.)
  4. Issue Categorization:

    • Critical: Must fix before filing
    • Important: May cause rejection
    • Minor: Best practice improvements

Required Data

This skill uses the automated claims analyzer from: Location: ${CLAUDE_PLUGIN_ROOT}/python\claims_analyzer.py

How to Use

When this skill is invoked:

  1. Load the claims analyzer:

    import sys
    sys.path.insert(0, os.path.join(os.environ.get('CLAUDE_PLUGIN_ROOT', '.'), 'python'))
    from python.claims_analyzer import ClaimsAnalyzer
    
    analyzer = ClaimsAnalyzer()
    
  2. Analyze claims:

    claims_text = """
    1. A system comprising:
        a processor;
        a memory; and
        said processor configured to...
    """
    
    results = analyzer.analyze_claims(claims_text)
    
  3. Present analysis:

    • Show compliance score (0-100)
    • List issues by severity (critical, important, minor)
    • Provide MPEP citations for each issue
    • Suggest specific fixes

Analysis Output Structure

{
    "claim_count": 20,
    "independent_count": 3,
    "dependent_count": 17,
    "compliance_score": 85,  # 0-100
    "total_issues": 12,
    "critical_issues": 2,
    "important_issues": 7,
    "minor_issues": 3,
    "issues": [
        {
            "category": "antecedent_basis",
            "severity": "critical",
            "claim_number": 1,
            "term": "said processor",
            "description": "Term 'processor' used with 'said' before first introduction",
            "mpep_cite": "MPEP 2173.05(e)",
            "suggestion": "Change 'said processor' to 'the processor' or introduce with 'a processor' first"
        },
        # ... more issues
    ]
}

Common Issues Detected

  1. Antecedent Basis Errors:

    • Using "said/the" before "a/an" introduction
    • Terms appearing in dependent claims not in parent
    • Missing antecedent in claim body
  2. Definiteness Issues:

    • Subjective terms: "substantially", "about", "approximately"
    • Relative terms: "large", "small", "thin"
    • Ambiguous language: "and/or", "optionally"
  3. Structure Issues:

    • Means-plus-function without adequate structure
    • Improper claim dependencies
    • Missing preamble or transition

Presentation Format

Present analysis as:

CLAIMS ANALYSIS REPORT
======================

Summary:
- Total Claims: 20 (3 independent, 17 dependent)
- Compliance Score: 85/100
- Issues Found: 12 (2 critical, 7 important, 3 minor)

CRITICAL ISSUES (Must Fix):

[Claim 1] Antecedent Basis Error
  Issue: Term 'processor' used with 'said' before introduction
  Location: "said processor configured to..."
  MPEP: 2173.05(e)
  Fix: Change to 'the processor' or introduce with 'a processor' first

[Claim 5] Indefinite Term
  Issue: Subjective term 'substantially' without definition
  Location: "substantially similar to..."
  MPEP: 2173.05(b)
  Fix: Define 'substantially' in specification or use objective criteria

IMPORTANT ISSUES:
...

MINOR ISSUES:
...

Integration with MPEP

For each issue, the skill can:

  1. Search MPEP for relevant guidance
  2. Provide specific MPEP section citations
  3. Show examiner guidance on similar issues
  4. Suggest fixes based on USPTO practice

Tools Available

  • Read: To load claims from files
  • Bash: To run Python analyzer
  • Write: To save analysis reports

GitHub 仓库

RobThePCGuy/Claude-Patent-Creator
路径: skills/patent-claims-analyzer
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能