MCP HubMCP Hub
返回技能列表

prometheus-configuration

camoneart
更新于 Today
12 次查看
2
2
在 GitHub 上查看
其他general

关于

This skill helps developers set up and configure Prometheus for comprehensive metrics collection, storage, and monitoring. Use it when implementing metric scraping, creating alerting rules, or establishing a full monitoring infrastructure for applications and systems. It provides guidance on key features like service discovery, recording rules, and integration with AlertManager.

技能文档

Prometheus Configuration

Complete guide to Prometheus setup, metric collection, scrape configuration, and recording rules.

Purpose

Configure Prometheus for comprehensive metric collection, alerting, and monitoring of infrastructure and applications.

When to Use

  • Set up Prometheus monitoring
  • Configure metric scraping
  • Create recording rules
  • Design alert rules
  • Implement service discovery

Prometheus Architecture

┌──────────────┐
│ Applications │ ← Instrumented with client libraries
└──────┬───────┘
       │ /metrics endpoint
       ↓
┌──────────────┐
│  Prometheus  │ ← Scrapes metrics periodically
│    Server    │
└──────┬───────┘
       │
       ├─→ AlertManager (alerts)
       ├─→ Grafana (visualization)
       └─→ Long-term storage (Thanos/Cortex)

Installation

Kubernetes with Helm

helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm repo update

helm install prometheus prometheus-community/kube-prometheus-stack \
  --namespace monitoring \
  --create-namespace \
  --set prometheus.prometheusSpec.retention=30d \
  --set prometheus.prometheusSpec.storageVolumeSize=50Gi

Docker Compose

version: '3.8'
services:
  prometheus:
    image: prom/prometheus:latest
    ports:
      - "9090:9090"
    volumes:
      - ./prometheus.yml:/etc/prometheus/prometheus.yml
      - prometheus-data:/prometheus
    command:
      - '--config.file=/etc/prometheus/prometheus.yml'
      - '--storage.tsdb.path=/prometheus'
      - '--storage.tsdb.retention.time=30d'

volumes:
  prometheus-data:

Configuration File

prometheus.yml:

global:
  scrape_interval: 15s
  evaluation_interval: 15s
  external_labels:
    cluster: 'production'
    region: 'us-west-2'

# Alertmanager configuration
alerting:
  alertmanagers:
    - static_configs:
        - targets:
          - alertmanager:9093

# Load rules files
rule_files:
  - /etc/prometheus/rules/*.yml

# Scrape configurations
scrape_configs:
  # Prometheus itself
  - job_name: 'prometheus'
    static_configs:
      - targets: ['localhost:9090']

  # Node exporters
  - job_name: 'node-exporter'
    static_configs:
      - targets:
        - 'node1:9100'
        - 'node2:9100'
        - 'node3:9100'
    relabel_configs:
      - source_labels: [__address__]
        target_label: instance
        regex: '([^:]+)(:[0-9]+)?'
        replacement: '${1}'

  # Kubernetes pods with annotations
  - job_name: 'kubernetes-pods'
    kubernetes_sd_configs:
      - role: pod
    relabel_configs:
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
        action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        target_label: __address__
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: namespace
      - source_labels: [__meta_kubernetes_pod_name]
        action: replace
        target_label: pod

  # Application metrics
  - job_name: 'my-app'
    static_configs:
      - targets:
        - 'app1.example.com:9090'
        - 'app2.example.com:9090'
    metrics_path: '/metrics'
    scheme: 'https'
    tls_config:
      ca_file: /etc/prometheus/ca.crt
      cert_file: /etc/prometheus/client.crt
      key_file: /etc/prometheus/client.key

Reference: See assets/prometheus.yml.template

Scrape Configurations

Static Targets

scrape_configs:
  - job_name: 'static-targets'
    static_configs:
      - targets: ['host1:9100', 'host2:9100']
        labels:
          env: 'production'
          region: 'us-west-2'

File-based Service Discovery

scrape_configs:
  - job_name: 'file-sd'
    file_sd_configs:
      - files:
        - /etc/prometheus/targets/*.json
        - /etc/prometheus/targets/*.yml
        refresh_interval: 5m

targets/production.json:

[
  {
    "targets": ["app1:9090", "app2:9090"],
    "labels": {
      "env": "production",
      "service": "api"
    }
  }
]

Kubernetes Service Discovery

scrape_configs:
  - job_name: 'kubernetes-services'
    kubernetes_sd_configs:
      - role: service
    relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)

Reference: See references/scrape-configs.md

Recording Rules

Create pre-computed metrics for frequently queried expressions:

# /etc/prometheus/rules/recording_rules.yml
groups:
  - name: api_metrics
    interval: 15s
    rules:
      # HTTP request rate per service
      - record: job:http_requests:rate5m
        expr: sum by (job) (rate(http_requests_total[5m]))

      # Error rate percentage
      - record: job:http_requests_errors:rate5m
        expr: sum by (job) (rate(http_requests_total{status=~"5.."}[5m]))

      - record: job:http_requests_error_rate:percentage
        expr: |
          (job:http_requests_errors:rate5m / job:http_requests:rate5m) * 100

      # P95 latency
      - record: job:http_request_duration:p95
        expr: |
          histogram_quantile(0.95,
            sum by (job, le) (rate(http_request_duration_seconds_bucket[5m]))
          )

  - name: resource_metrics
    interval: 30s
    rules:
      # CPU utilization percentage
      - record: instance:node_cpu:utilization
        expr: |
          100 - (avg by (instance) (rate(node_cpu_seconds_total{mode="idle"}[5m])) * 100)

      # Memory utilization percentage
      - record: instance:node_memory:utilization
        expr: |
          100 - ((node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes) * 100)

      # Disk usage percentage
      - record: instance:node_disk:utilization
        expr: |
          100 - ((node_filesystem_avail_bytes / node_filesystem_size_bytes) * 100)

Reference: See references/recording-rules.md

Alert Rules

# /etc/prometheus/rules/alert_rules.yml
groups:
  - name: availability
    interval: 30s
    rules:
      - alert: ServiceDown
        expr: up{job="my-app"} == 0
        for: 1m
        labels:
          severity: critical
        annotations:
          summary: "Service {{ $labels.instance }} is down"
          description: "{{ $labels.job }} has been down for more than 1 minute"

      - alert: HighErrorRate
        expr: job:http_requests_error_rate:percentage > 5
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "High error rate for {{ $labels.job }}"
          description: "Error rate is {{ $value }}% (threshold: 5%)"

      - alert: HighLatency
        expr: job:http_request_duration:p95 > 1
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "High latency for {{ $labels.job }}"
          description: "P95 latency is {{ $value }}s (threshold: 1s)"

  - name: resources
    interval: 1m
    rules:
      - alert: HighCPUUsage
        expr: instance:node_cpu:utilization > 80
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "High CPU usage on {{ $labels.instance }}"
          description: "CPU usage is {{ $value }}%"

      - alert: HighMemoryUsage
        expr: instance:node_memory:utilization > 85
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "High memory usage on {{ $labels.instance }}"
          description: "Memory usage is {{ $value }}%"

      - alert: DiskSpaceLow
        expr: instance:node_disk:utilization > 90
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "Low disk space on {{ $labels.instance }}"
          description: "Disk usage is {{ $value }}%"

Validation

# Validate configuration
promtool check config prometheus.yml

# Validate rules
promtool check rules /etc/prometheus/rules/*.yml

# Test query
promtool query instant http://localhost:9090 'up'

Reference: See scripts/validate-prometheus.sh

Best Practices

  1. Use consistent naming for metrics (prefix_name_unit)
  2. Set appropriate scrape intervals (15-60s typical)
  3. Use recording rules for expensive queries
  4. Implement high availability (multiple Prometheus instances)
  5. Configure retention based on storage capacity
  6. Use relabeling for metric cleanup
  7. Monitor Prometheus itself
  8. Implement federation for large deployments
  9. Use Thanos/Cortex for long-term storage
  10. Document custom metrics

Troubleshooting

Check scrape targets:

curl http://localhost:9090/api/v1/targets

Check configuration:

curl http://localhost:9090/api/v1/status/config

Test query:

curl 'http://localhost:9090/api/v1/query?query=up'

Reference Files

  • assets/prometheus.yml.template - Complete configuration template
  • references/scrape-configs.md - Scrape configuration patterns
  • references/recording-rules.md - Recording rule examples
  • scripts/validate-prometheus.sh - Validation script

Related Skills

  • grafana-dashboards - For visualization
  • slo-implementation - For SLO monitoring
  • distributed-tracing - For request tracing

快速安装

/plugin add https://github.com/camoneart/claude-code/tree/main/prometheus-configuration

在 Claude Code 中复制并粘贴此命令以安装该技能

GitHub 仓库

camoneart/claude-code
路径: skills/prometheus-configuration

相关推荐技能

analyzing-dependencies

这个Claude Skill能自动分析项目依赖的安全漏洞、过时包和许可证合规问题。它支持npm、pip、composer、gem和go modules等多种包管理器,帮助开发者识别潜在风险。当您需要检查依赖安全性、更新过时包或确保许可证兼容时,可使用"check dependencies"等触发短语来调用。

查看技能

work-execution-principles

其他

这个Claude Skill为开发者提供了一套通用的工作执行原则,涵盖任务分解、范围确定、测试策略和依赖管理。它确保开发活动中的一致质量标准,适用于代码审查、工作规划和架构决策等场景。该技能与所有编程语言和框架兼容,帮助开发者系统化地组织代码结构和定义工作边界。

查看技能

Git Commit Helper

Git Commit Helper能通过分析git diff自动生成规范的提交信息,适用于开发者编写提交消息或审查暂存区变更时。它能识别代码变更类型并自动匹配Conventional Commits规范,提供包含功能类型、作用域和描述的标准化消息。开发者只需提供git diff内容即可获得即用型的提交消息建议。

查看技能

algorithmic-art

该Skill使用p5.js创建包含种子随机性和交互参数探索的算法艺术,适用于生成艺术、流场或粒子系统等需求。它能自动生成算法哲学文档(.md)和对应的交互式艺术代码(.html/.js),确保作品原创性避免侵权。开发者可通过定义计算美学理念快速获得可交互的艺术实现方案。

查看技能