MCP HubMCP Hub
返回技能列表

patent-reviewer

RobThePCGuy
更新于 Today
79 次查看
2
2
在 GitHub 上查看
设计aidesign

关于

This skill provides automated review of utility patent applications against USPTO MPEP guidelines, enabling developers to check compliance and analyze claims, specifications, and formalities. It integrates with patent databases and USPTO regulations for comprehensive patent analysis and drafting assistance. Use it when building patent-related applications that require USPTO compliance checking or patent creation workflows.

快速安装

Claude Code

推荐
插件命令推荐
/plugin add https://github.com/RobThePCGuy/Claude-Patent-Creator
Git 克隆备选方式
git clone https://github.com/RobThePCGuy/Claude-Patent-Creator.git ~/.claude/skills/patent-reviewer

在 Claude Code 中复制并粘贴此命令以安装该技能

技能文档

Patent Creator Skill

Comprehensive patent creation system with USPTO MPEP, prior art databases, and USPTO API for complete patent application analysis.

When to Use

Review patent applications for USPTO compliance, analyze claims/specifications/formalities, integrate prior art, get USPTO guidance, assist with patent drafting.

Quick Review Commands

/full-review              # Complete parallel review
/review-claims            # 35 USC 112b compliance
/review-specification     # 35 USC 112a compliance
/review-formalities       # MPEP 608 compliance
/create-patent            # New patent application

Available MCP Tools

MPEP & Regulations

  • search_mpep - Search MPEP, 35 USC, 37 CFR
  • get_mpep_section - Get complete MPEP section by number

Patent Search

  • search_patents_bigquery - Search 76M+ patents
  • get_patent_bigquery - Get full patent details
  • search_patents_by_cpc_bigquery - Search by CPC classification

Patent Analysis

  • review_patent_claims - Analyze claims for 35 USC 112(b)
  • review_specification - Check specification support (112a)
  • check_formalities - Verify MPEP 608 compliance

Diagram Generation

  • render_diagram - Create diagrams from DOT code
  • create_flowchart - Generate patent-style flowcharts
  • create_block_diagram - Create system block diagrams
  • add_diagram_references - Add reference numbers

Review Workflows

Complete Patent Creation Review (/full-review)

Runs all analyzers in parallel for comprehensive analysis:

Output:

  • All compliance issues across components
  • Severity ratings (critical/important/minor)
  • Specific MPEP citations
  • Actionable fix recommendations
  • Prioritized remediation plan

Claims-Only Review (/review-claims)

35 USC 112(b) Compliance:

  • Antecedent basis
  • Definiteness
  • Claim structure
  • Subjective terms
  • Means-plus-function compliance

Specification Review (/review-specification)

35 USC 112(a) Requirements:

  • Written description
  • Enablement
  • Best mode
  • Claim support

Formalities Check (/review-formalities)

MPEP 608 Compliance:

  • Abstract (50-150 words)
  • Title (<=500 characters)
  • Drawing references
  • Required sections

Patent Creation Workflow (/create-patent)

Complete 6-phase patent drafting (55-80 minutes):

  1. Discovery (10-15 min) - Gather invention details
  2. Technology Analysis (5 min) - Assess patentability (101, 102, 103)
  3. Specification Drafting (15-20 min) - Background, summary, detailed description
  4. Claims Drafting (10-15 min) - Independent + dependent claims
  5. Diagrams & Abstract (10-15 min) - Block diagrams, flowcharts, abstract
  6. Automatic Validation (5-10 min) - Runs /full-review, provides fixes

Output: USPTO-ready filing package with diagrams

MPEP Research

# General search
search_mpep("claim definiteness 112(b)", top_k=5)

# Filtered by source
search_mpep("enablement", source_filter="35_USC")
search_mpep("abstract", source_filter="MPEP")

# Get specific section
get_mpep_section("2173")  # Claim definiteness

Common MPEP Sections

SectionTopic
608Formalities (abstract, title, drawings)
2100Patentability requirements
2163Guidelines for 35 USC 112(a)
2173Claim definiteness (35 USC 112(b))

Prior Art Integration

# BigQuery search (76M+ patents)
search_patents_bigquery(
    query="neural network training",
    country="US",
    start_year=2020,
    limit=20
)

# CPC classification search
search_patents_by_cpc_bigquery(cpc_code="G06N3", limit=50)

Integrate findings:

  1. Cite in Background section
  2. Emphasize distinctions in Summary
  3. Explain advantages in Detailed Description
  4. Draft claims to avoid/distinguish
  5. List in IDS

Best Practices

Before Review:

  • Prepare complete application
  • Run /full-review
  • Address critical issues first

During Review:

  • Focus on critical issues (antecedent basis, claim support, definiteness)
  • Use MPEP citations
  • Iterate until compliant

After Review:

  • Document compliance
  • Final /full-review validation
  • Prepare filing package

Common Review Findings

Critical (Must Fix):

  • Missing antecedent basis
  • Claim elements unsupported
  • Abstract exceeds 150 words
  • Indefinite language

Important (Should Fix):

  • Subjective terms without criteria
  • Weak enablement
  • Inconsistent terminology

Minor (Optional):

  • Add example embodiments
  • Strengthen best mode
  • Improve claim scope

Quick Reference

Key Compliance Checks

RequirementCitationTool
Antecedent basis35 USC 112(b)review_patent_claims
Written description35 USC 112(a)review_specification
Enablement35 USC 112(a)review_specification
Abstract lengthMPEP 608.01(b)check_formalities
Title formatMPEP 606check_formalities

GitHub 仓库

RobThePCGuy/Claude-Patent-Creator
路径: skills/patent-reviewer
bigqueryclaude-codeclaude-code-pluginfaissmcp-servermpep

相关推荐技能

content-collections

Content Collections 是一个 TypeScript 优先的构建工具,可将本地 Markdown/MDX 文件转换为类型安全的数据集合。它专为构建博客、文档站和内容密集型 Vite+React 应用而设计,提供基于 Zod 的自动模式验证。该工具涵盖从 Vite 插件配置、MDX 编译到生产环境部署的完整工作流。

查看技能

creating-opencode-plugins

该Skill为开发者创建OpenCode插件提供指导,涵盖命令、文件、LSP等25+种事件类型。它详细说明了插件结构、事件API规范及JavaScript/TypeScript实现模式,帮助开发者构建事件驱动的模块。适用于需要拦截操作、扩展功能或自定义AI助手行为的插件开发场景。

查看技能

sglang

SGLang是一个专为LLM设计的高性能推理框架,特别适用于需要结构化输出的场景。它通过RadixAttention前缀缓存技术,在处理JSON、正则表达式、工具调用等具有重复前缀的复杂工作流时,能实现极速生成。如果你正在构建智能体或多轮对话系统,并追求远超vLLM的推理性能,SGLang是理想选择。

查看技能

evaluating-llms-harness

测试

该Skill通过60+个学术基准测试(如MMLU、GSM8K等)评估大语言模型质量,适用于模型对比、学术研究及训练进度追踪。它支持HuggingFace、vLLM和API接口,被EleutherAI等行业领先机构广泛采用。开发者可通过简单命令行快速对模型进行多任务批量评估。

查看技能